960 resultados para P-D effect
Resumo:
We have investigated the relationship between fetal hemoglobin (HbF) levels and metabolic control in subjects with insulin-dependent (N = 79) and non-insulin-dependent diabetes mellitus (N = 242). HbF and hemoglobin A1c (HbA1c) levels were increased in subjects with type 1 and type 2 diabetes as compared to levels in nondiabetic individuals (P<0.0001), and were significantly higher in type 1 than in type 2 diabetes subjects. Lower levels of HbA1c and HbF were observed in type 2 diabetes subjects treated by diet, intermediate levels in those treated with oral hypoglycemic agents, and higher levels in those treated with insulin. HbF and HbA1c levels were correlated in type 1 diabetes (R2 = 0.57, P<0.0001) and type 2 diabetes (R2 = 0.58, P<0.0001) subjects. Following intense treatment, twelve diabetic patients showed significant improvement both in HbA1c and HbF values. We conclude that increased HbF levels reflect poor metabolic control in subjects with diabetes mellitus.
Resumo:
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Resumo:
Type 1 diabetes, as an autoimmune disease, presents several islet cell-specific autoantibodies such as islet cell antibody (ICA), anti-insulin, anti-glutamic acid decarboxylase (GAD) and the antibody (Ab) against tyrosine phosphatase (PTP)-like protein known as ICA-512 (IA-2). In order to determine the frequency of the anti-GAD and anti-IA-2 autoantibodies in Brazilian type 1 diabetes patients we studied 35 diabetes mellitus (DM) type 1 patients with recent-onset disease (£12 months) and 37 type 1 diabetes patients with long-duration diabetes (>12 months) who were compared to 12 children with normal fasting glucose. Anti-GAD65 and anti-IA-2 autoantibodies were detected with commercial immunoprecipitation assays. The frequency of positive results in recent-onset DM type 1 patients was 80.0% for GADAb, 62.9% for IA-2Ab and 82.9% for GADAb and/or IA-2Ab. The long-duration type 1 diabetes subjects presented frequencies of 54.1% for GADAb and IA-2Ab, and 67.5% for GAD and/or IA-2 antibodies. The control group showed no positive cases. Anti-GAD and IA-2 assays showed a high frequency of positivity in these Brazilian type 1 diabetes patients, who presented the same prevalence as a Caucasian population.
Resumo:
Neurons in the rostral and caudal parts of the ventrolateral medulla (VLM) play a pivotal role in the regulation of sympathetic vasomotor activity and blood pressure. Studies in several species, including humans, have shown that these regions contain a high density of AT1 receptors specifically associated with neurons that regulate the sympathetic vasomotor outflow, or the secretion of vasopressin from the hypothalamus. It is well established that specific activation of AT1 receptors by application of exogenous angiotensin II in the rostral and caudal VLM excites sympathoexcitatory and sympathoinhibitory neurons, respectively, but the physiological role of these receptors in the normal synaptic regulation of VLM neurons is not known. In this paper we review studies which have defined the effects of specific activation or blockade of these receptors on cardiovascular function, and discuss what these findings tell us with regard to the physiological role of AT1 receptors in the VLM in the tonic and phasic regulation of sympathetic vasomotor activity and blood pressure.
Resumo:
Chicken embryos kept in culture medium were bombarded using a high helium gas pressure biolistic device. To optimize the factors that affect transformation efficiency, the lacZ gene under control of the human cytomegalovirus immediate early enhancer/promoter was used as a reporter gene. There was an inverse relationship between survival rate and transformation efficiency. The best conditions obtained for high embryo survival and high transformation efficiency were achieved with 800 psi helium gas pressure, 500 mmHg vacuum, gold particles, an 8 cm DNA-coated microparticle flying distance to the embryo and embryo placement 0.5 cm from the center of the particle dispersion cone. Under these conditions, transformation efficiency was 100%, survival rate 25% and the number of expression units in the embryo body cells ranged from 100 to 1,000. Expression of green fluorescent protein was also detected in embryos bombarded under optimal conditions. Based on the results obtained, the biolistic process can be considered an efficient method for the transformation of chicken embryos and therefore can be used as a model system to study transient gene expression and tissue-specific promoters.
Resumo:
f. 24.2.1769 i Strömfors d. 20.4.1875 i Helsingfors Vid mitten av 1800-talet var Carl Axel Gottlund en pionjär inom finskhetsrörelsen, tidningsman, insamlare av den folkliga traditionen och lektor i finska språket. Hans litterära produktion präglades av en romantisk föreställning om finländarnas mytologiska guldålder samt av en tidigare upplysningsanda. I strävan att utveckla det finska språket understödde Gottlund Savolax-dialekterna. Som det mest centrala verket i hans produktion ses dikteposet Otava, som utkom i två delar åren 1828-1832 och fick kritik för att det innehöll Savolax-dialektala drag. Senast då det finska nationaleposet Kalevala utgavs år 1835, fick Otava ändå ge avkall på den position som nationellt betydande verk som Gottlund hade siktat på då han skrev eposet. Biografiskt lexikon för Finland: http://www.blf.fi/artikel.php?id=2817
Resumo:
Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.
Resumo:
Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.
Resumo:
Patients with diffuse large B-cell lymphoma treated in a University Hospital were studied from 1990 to 2001. Two treatment regimens were used: ProMACE-CytaBOM and then, from November 1996 on, the CHOP regimen. Complete remission (CR), disease-free survival (DFS), and overall survival (OS) rates were determined. Primary refractory patients and relapsed patients were also assessed. A total of 111 patients under 60 years of age were assessed and ranked according to the international prognostic index adjusted to age. Twenty (18%) of them were classified as low risk, 40 (36%) as intermediate risk, 33 (29.7%) as high intermediate risk, and 18 (16.3%) as high risk. Over a five-year period, OS and DFS rates were 71 and 59%, respectively, for all patients. For the same time period, OS and DFS rates were 72.8 and 61.3%, respectively, for 77 patients treated with CHOP chemotherapy and 71.3 and 60% for patients treated with the ProMACE-CytaBOM protocol. There was no significant difference in OS or DFS between the two groups. Eleven of 50 refractory and relapsed patients were consolidated with high doses of chemotherapy. Three received allogenic and 8 autologous bone marrow transplantation. For the latter, CR was 62.5% and mean OS was 41.1 months. The clinical behavior, CR, DFS, and OS of the present patients were similar to those reported in the literature. We conclude that both the CHOP and ProMACE-CytaBOM protocols can be used to treat diffuse large B-cell lymphoma patients, although the CHOP protocol is preferable because of its lower cost and lower toxicity.
Resumo:
A series of studies have shown that the heavy burdens of diarrheal diseases in the first 2 formative years of life in children living in urban shanty towns have negative effects on physical and cognitive development lasting into later childhood. We have shown that APOE4 is relatively common in shanty town children living in Brazil (13.4%) and suggest that APOE4 has a protective role in cognitive development as well as weight-for-height in children with heavy burdens of diarrhea in early childhood (64/123; 52%), despite being a marker for cognitive decline with Alzheimer’s and cardiovascular diseases later in life. APOE2 frequency was higher among children with heaviest diarrhea burdens during the first 2 years of life, as detected by PCR using the restriction fragment length polymorphism method, raising the possibility that ApoE-cholesterol balance might be critical for growth and cognitive development under the stress of heavy diarrhea burdens and when an enriched fat diet is insufficient. These findings provide a potential explanation for the survival advantage in evolution of genes, which might raise cholesterol levels during heavy stress of diarrhea burdens and malnutrition early in life.
Resumo:
This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02vs 0.15 ± 0.02), medial (0.30 ± 0.06vs 0.14 ± 0.01) and distal (0.43 ± 0.07vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.
Resumo:
The purpose of this study was to analyze the relationship between the anaerobic components of the maximal accumulated oxygen deficit (MAOD) and of the 30-second Wingate anaerobic test (30-WAnT). Nine male physical education students performed: a) a maximal incremental exercise test; b) a supramaximal constant workload test to determine the anaerobic components of the MAOD; and c) a 30-WAnT to measure the peak power (PP) and mean power (MP). The fast component of the excess post-exercise oxygen consumption and blood lactate accumulation were measured after the supramaximal constant workload test in order to determine the contributions made by alactic (ALMET) and lactic (LAMET) metabolism. Significant correlations were found between PP and ALMET (r=0.71; P=0.033) and between MP and LAMET(r=0.72; P=0.030). The study results suggested that the anaerobic components of the MAOD and of the 30-WAnT are similarly applicable in the assessment of ALMET and LAMET during high-intensity exercise.
Resumo:
The semipalmated sandpiper Calidris pusilla and the spotted sandpiper Actitis macularia are long- and short-distance migrants, respectively. C. pusilla breeds in the sub-arctic and mid-arctic tundra of Canada and Alaska and winters on the north and east coasts of South America. A. macularia breeds in a broad distribution across most of North America from the treeline to the southern United States. It winters in the southern United States, and Central and South America. The autumn migration route of C. pusilla includes a non-stop flight over the Atlantic Ocean, whereas autumn route of A. macularia is largely over land. Because of this difference in their migratory paths and the visuo-spatial recognition tasks involved, we hypothesized that hippocampal volume and neuronal and glial numbers would differ between these two species. A. macularia did not differ from C. pusilla in the total number of hippocampal neurons, but the species had a larger hippocampal formation and more hippocampal microglia. It remains to be investigated whether these differences indicate interspecies differences or neural specializations associated with different strategies of orientation and navigation.
Resumo:
High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.