931 resultados para Outdoor sculpture
Resumo:
We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.
Resumo:
Wi-Fi is a commonly available source of localization information in urban environments but is challenging to integrate into conventional mapping architectures. Current state of the art probabilistic Wi-Fi SLAM algorithms are limited by spatial resolution and an inability to remove the accumulation of rotational error, inherent limitations of the Wi-Fi architecture. In this paper we leverage the low quality sensory requirements and coarse metric properties of RatSLAM to localize using Wi-Fi fingerprints. To further improve performance, we present a novel sensor fusion technique that integrates camera and Wi-Fi to improve localization specificity, and use compass sensor data to remove orientation drift. We evaluate the algorithms in diverse real world indoor and outdoor environments, including an office floor, university campus and a visually aliased circular building loop. The algorithms produce topologically correct maps that are superior to those produced using only a single sensor modality.
Resumo:
In 1996, Emma Baulch went to live in Bali to do research on youth culture. Her chats with young people led her to an enormously popular regular outdoor show dominated by local reggae, punk, and death metal bands. In this rich ethnography, she takes readers inside each scene: hanging out in the death metal scene among unemployed university graduates clad in black T-shirts and ragged jeans; in the punk scene among young men sporting mohawks, leather jackets, and hefty jackboots; and among the remnants of the local reggae scene in Kuta Beach, the island’s most renowned tourist area. Baulch tracks how each music scene arrived and grew in Bali, looking at such influences as the global extreme metal underground, MTV Asia, and the internationalization of Indonesia’s music industry. Making Scenes is an exploration of the subtle politics of identity that took place within and among these scenes throughout the course of the 1990s. Participants in the different scenes often explained their interest in death metal, punk, or reggae in relation to broader ideas about what it meant to be Balinese, which reflected views about Bali’s tourism industry and the cultural dominance of Jakarta, Indonesia’s capital and largest city. Through dance, dress, claims to public spaces, and onstage performances, participants and enthusiasts reworked “Balinese-ness” by synthesizing global media, ideas of national belonging, and local identity politics. Making Scenes chronicles the creation of subcultures at a historical moment when media globalization and the gradual demise of the authoritarian Suharto regime coincided with revitalized, essentialist formulations of the Balinese self.
Resumo:
Outdoor air pollution is a killer. A recent report from the World Health Organization estimated that 3.7 million deaths per year are due to outdoor air pollution. Most of these deaths are in low and middle income countries, with China being the country that often springs to mind. However, Australia still has a relatively big air pollution problem with an estimated 3,000 deaths per year. Traffic pollution is the major contributor to urban air pollution in Australia. Extreme events, such dust storms, bushfires and the recent coal fire in Morwell, dramatically increase pollution levels (for days or weeks) and are also very hazardous to health. Australian governments in the last 30 years have committed to improving air quality, and policies have been discussed and implemented with the aim of creating cleaner air. One key policy measure is the National Environment Protection Measures for air quality. These set standards for six important outdoor pollutants. Their key goal is to create “ambient air quality that allows for the adequate protection of human health and wellbeing”.
Resumo:
This thesis demonstrates that robots can learn about how the world changes, and can use this information to recognise where they are, even when the appearance of the environment has changed a great deal. The ability to localise in highly dynamic environments using vision only is a key tool for achieving long-term, autonomous navigation in unstructured outdoor environments. The proposed learning algorithms are designed to be unsupervised, and can be generated by the robot online in response to its observations of the world, without requiring information from a human operator or other external source.
Resumo:
Several cell-free assays are currently used to quantify and detect the Reactive Oxygen Species (ROS). All of them have certain limitations, do not provide direct comparison of results and, to date, none of these assays have been acknowledged as the most suitable acellular assay and none has yet been adopted for investigation of potential PM toxicity. These assays include DTT, ascorbic acid, DCFHDA and PFN assays which have been used in measurements of the particles generated from various combustion sources such as diesel engine, wood smoke (or biomass burning) and cigarette smoke, as well as for outdoor measurements. All the probes use different units for expressing redox properties of PM. Also, their reactivity is being triggered by different types of ROS. This limits the direct comparison of the results that are reporting the toxicity of the same aerosol type measured with various probes. This study is evaluating and comparing the various assays in order to develop deeper understanding of their capabilities, selectivity as well as improve understanding of the underlying chemical mechanisms. Keywords: DTT, DCFH-DA, PFN, BPEA-nit, Ascorbic acid, oxidative potential
Resumo:
INTRODUCTION: The first South African National Burden of Disease study quantified the underlying causes of premature mortality and morbidity experienced in South Africa in the year 2000. This was followed by a Comparative Risk Assessment to estimate the contributions of 17 selected risk factors to burden of disease in South Africa. This paper describes the health impact of exposure to four selected environmental risk factors: unsafe water, sanitation and hygiene; indoor air pollution from household use of solid fuels; urban outdoor air pollution and lead exposure. METHODS: The study followed World Health Organization comparative risk assessment methodology. Population-attributable fractions were calculated and applied to revised burden of disease estimates (deaths and disability adjusted life years, [DALYs]) from the South African Burden of Disease study to obtain the attributable burden for each selected risk factor. The burden attributable to the joint effect of the four environmental risk factors was also estimated taking into account competing risks and common pathways. Monte Carlo simulation-modeling techniques were used to quantify sampling, uncertainty. RESULTS: Almost 24 000 deaths were attributable to the joint effect of these four environmental risk factors, accounting for 4.6% (95% uncertainty interval 3.8-5.3%) of all deaths in South Africa in 2000. Overall the burden due to these environmental risks was equivalent to 3.7% (95% uncertainty interval 3.4-4.0%) of the total disease burden for South Africa, with unsafe water sanitation and hygiene the main contributor to joint burden. The joint attributable burden was especially high in children under 5 years of age, accounting for 10.8% of total deaths in this age group and 9.7% of burden of disease. CONCLUSION: This study highlights the public health impact of exposure to environmental risks and the significant burden of preventable disease attributable to exposure to these four major environmental risk factors in South Africa. Evidence-based policies and programs must be developed and implemented to address these risk factors at individual, household, and community levels.
Resumo:
Mongolia has significant exposure to environmental risk factors because of poor environmental management and behaviors, and children are increasingly vulnerable to these threats. This study aimed to assess levels of exposure and summarize the evidence for associations between exposures to environmental risk factors and adverse health outcomes in Mongolia, with a particular focus on children. A systematic review was conducted using the PubMed, EMBASE, Web of Science, Global Health Library, CINAHL, CABI, Scopus, and mongolmed.mn electronic databases up to April 2014 . A total of 59 studies meeting the predetermined criteria were included. Results indicate that the Mongolian population has significant exposure to outdoor and indoor air pollution, metals, environmental tobacco smoke, and other chemical toxins, and these risk factors have been linked to respiratory and cardiovascular diseases among adults and respiratory diseases and neurodevelopmental disorders among children. Well-designed epidemiological investigations in vulnerable populations especially in pregnant women and children are recommended.
Resumo:
The Out of the Box Festival was founded in 1994 by the Queensland Performing Arts Centre and has been held biannually ever since both within and around the centre in what is now known as the Cultural Precinct at Southbank. It is unique in Australia in that it caters entirely to children aged 8 years and under, with a highly curated program of ticketed performance events, workshops and free arts-based events. It is attended by school and kindergarten groups and by families, and besides engaging children in high quality arts experiences, the festival is also a platform for advocating the developmental and educational benefits of the arts for children. Dr Mark Radvan was the artistic director of the 2008 festival, with responsibility for developing the curatorial direction of each festival, for creating and programming its events, and for working with festival partners The Queensland Art Gallery, The Queensland Museum, The State Library of Queensland and The Queensland Theatre Company. Radvan designed selected and commissioned works to demonstrate how the arts create memorable, celebratory and immersive experiences that stimulate children’s imagination, their curiosity and confidence about the material world and the cultures of its people. A core event was an outdoor music and dance performance space featuring entirely Indigenous performers that was not only the beating heart of the festival, but served to underlie the importance of mainstreaming awareness of our first peoples in the increasingly culturally diverse communities of children attending.
Resumo:
The primary requirements for high-biomass-concentration microalgal cultivation include a photon source and distribution, efficient gas exchange and suitable growth medium composition. However, for mass outdoor production of microalgae, growth medium composition is a major controlling factor as most of the other factors such as light source and distribution are virtually uncontrollable. This work utilises an elemental balance approach between growth medium and biomass compositions to obtain high-density microalgal cultures in an open system. F medium, commonly used for the cultivation of marine microalgae such as Tetraselmis suecica was redesigned on the basis of increasing the biomass capacity of its major deficient components to support high biomass concentrations (τ ∼ 5.0 % for N, S and τ ∼ 10 % P), and the entire formulation was dissolved in 0.2 um sterile filtered natural seawater. Results show that the new medium (F') displayed a maximum biomass concentration and total lipid concentration of 1.29 g L 1 and 108.7 mg L 1 respectively, which represents over 2-fold increase compared to that of the F medium. Keeping all variables constant except growth medium, and using F medium as the base case of 1 medium cost (MC) unit mg -1 lipid, the F' medium yielded lipid at a cost of only 0.35 MC unit mg -1 lipids. These results show that greater amounts of biomass and lipids can be obtained more economically with minimal extra effort simply by using an optimised growth medium.
Resumo:
There is a need for systems which can autonomously perform coverage tasks on large outdoor areas. Unfortunately, the state-of-the-art is to use GPS based localization, which is not suitable for precise operations near trees and other obstructions. In this paper we present a robotic platform for autonomous coverage tasks. The system architecture integrates laser based localization and mapping using the Atlas Framework with Rapidly-Exploring Random Trees path planning and Virtual Force Field obstacle avoidance. We demonstrate the performance of the system in simulation as well as with real world experiments.
Resumo:
Australian climate is highly suitable for using outdoor air for free building cooling. In order to evaluate the suitability of hybrid cooler for specific applications, a pre-design climate assessment tool is developed and presented in this paper. In addition to the consideration of the local climate, comfort zone proposed by ASHRAE handbook and specific design of building and operation of hybrid cooler, possible influence from environmental factors (e.g. air humidity and air velocity), as well as personal factors (e.g. activity level and clothing insulation) on occupant’s thermal comfort are also considered in this tool. It is demonstrated that with the input of climatic data for a particular location and the associated design data for a specific application, the developed climate assessment tool is able to not only sort outdoor air conditions into the different process regions but also project them onto the psychrometric chart. It can also be used to estimate the hours for an individual operational mode under various climate conditions and summarize them in a table “Results”.
Resumo:
Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.
Co-optimisation of indoor environmental quality and energy consumption within urban office buildings
Resumo:
This study aimed to develop a multi-component model that can be used to maximise indoor environmental quality inside mechanically ventilated office buildings, while minimising energy usage. The integrated model, which was developed and validated from fieldwork data, was employed to assess the potential improvement of indoor air quality and energy saving under different ventilation conditions in typical air-conditioned office buildings in the subtropical city of Brisbane, Australia. When operating the ventilation system under predicted optimal conditions of indoor environmental quality and energy conservation and using outdoor air filtration, average indoor particle number (PN) concentration decreased by as much as 77%, while indoor CO2 concentration and energy consumption were not significantly different compared to the normal summer time operating conditions. Benefits of operating the system with this algorithm were most pronounced during the Brisbane’s mild winter. In terms of indoor air quality, average indoor PN and CO2 concentrations decreased by 48% and 24%, respectively, while potential energy savings due to free cooling went as high as 108% of the normal winter time operating conditions. The application of such a model to the operation of ventilation systems can help to significantly improve indoor air quality and energy conservation in air-conditioned office buildings.
Resumo:
Elevated levels of fungi in indoor environments have been linked with mould/moisture damage in building structures. However, there is a lack of information about “normal” concentrations and flora as well as guidelines of viable fungi in the school environment in different climatic conditions. We have reviewed existing guidelines for indoor fungi and the current knowledge of the concentrations and flora of viable fungi in different climatic areas, the impact of the local factors on concentrations and flora of viable fungi in school environments. Meta-regression was performed to estimate the average behaviour for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3). These concentrations were significantly higher for both outdoors and indoors in the moderate than in the continental climatic area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi. The most common fungal species both in the moderate and continental area were Cladosporium spp. and Penicillium spp. The suggested few quantitative guidelines for indoor air viable fungi for school buildings are much lower than for residential areas. This review provides a synthesis, which can be used to guide the interpretation of the fungi measurements results and help to find indications of mould/moisture in school building structures.