920 resultados para Outdoor recreation--New Jersey--Pinelands National Reserve--Maps.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract—In the first of two companion papers, a 54-yr time series for the oyster population in the New Jersey waters of Delaware Bay was analyzed to develop biological relationships necessary to evaluate maximum sustainable yield (MSY) reference points and to consider how multiple stable points affect reference point-based management. The time series encompassed two regime shifts, one circa 1970 that ushered in a 15-yr period of high abundance, and a second in 1985 that ushered in a 20-yr period of low abundance. The intervening and succeeding periods have the attributes of alternate stable states. The biological relationships between abundance, recruitment, and mortality were unusual in four ways. First, the broodstock–recruitment relationship at low abundance may have been driven more by the provision of settlement sites for larvae by the adults than by fecundity. Second, the natural mortality rate was temporally unstable and bore a nonlinear relationship to abundance. Third, combined high abundance and low mortality, though likely requiring favorable environmental conditions, seemed also to be a self-reinforcing phenomenon. As a consequence, the abundance –mortality relationship exhibited both compensatory and depensatory components. Fourth, the geographic distribution of the stock was intertwined with abundance and mortality, such that interrelationships were functions both of spatial organization and inherent populatio

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the second of two companion articles, a 54-year time series for the oyster population in the New Jersey waters of Delaware Bay is analyzed to examine how the presence of multiple stable states affects reference-point–based management. Multiple stable states are described by four types of reference points. Type I is the carrying capacity for the stable state: each has associated with it a type-II reference point wherein surplus production reaches a local maximum. Type-II reference points are separated by an intermediate surplus production low (type III). Two stable states establish a type-IV reference point, a point-of-no-return that impedes recovery to the higher stable state. The type-II to type-III differential in surplus production is a measure of the difficulty of rebuilding the population and the sensitivity of the population to collapse at high abundance. Surplus production projections show that the abundances defining the four types of reference points are relatively stable over a wide range of uncertainties in recruitment and mortality rates. The surplus production values associated with type-II and type-III reference points are much more uncertain. Thus, biomass goals are more easily established than fishing mortality rates for oyster population

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine if shoreface sand ridges provide unique habitats for fish on the inner continental shelf, two cross-shelf trawl surveys (23 km in length) were conducted in southern New Jersey (July and September 1991−95 with a beam trawl and July and September 1997−06 with an otter trawl) to assess whether species abundance, richness, and assemblages differed on and away from the ridge. The dominant species collected with both gears were from the families Paralichthyidae, Triglidae, Gobiidae, Serranidae, Engraulidae, Stromateidae, and Sciaenidae. Overall abundance (n=41,451 individuals) and species richness (n=61 species) were distributed bimodally across the nearshore to offshore transect, and the highest values were found on either side of the sand ridge regardless of gear type. Canonical correspondence analysis revealed three species assemblages: inshore (<5 meters depth), near-ridge (9−14 meters depth), and offshore (>14 meters depth), and variation in species composition between gear types. Environmental factors that corresponded with the assemblage changes included depth, temperature, distance from the top of the ridge, and habitat complexity. The most abundant near-ridge assemblages were distinct and included economically important species. Sand ridges of the inner continental shelf appear to be important habitat for a number of fish species and therefore may not be a suitable area for sand and gravel mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimates of the abundance of American horseshoe crabs (Limulus polyphemus) are important to determine egg production and to manage populations for the energetic needs of shorebirds that feed on horseshoe crab eggs. In 2003, over 17,500 horseshoe crabs were tagged and released throughout Delaware Bay, and recaptured crabs came from spawning surveys that were conducted during peak spawning. We used two release cohorts to test for a temporary effect of tagging on spawning behavior and we adjusted the number of releases according to relocation rates from a telemetry study. The abundance estimate was 20 million horseshoe crabs (90 % confidence interval: 13−28 million), of which 6.25 million (90% CI: 4.0−8.8 million) were females. The combined harvest rate for Delaware, New Jersey, Virginia, and Maryland in 2003 was 4% (90% CI: 3−6%) of the abundance estimate. Over-wintering of adults in Delaware Bay could explain, in part, differences in estimates from ocean-trawl surveys. Based on fecundity of 88,000 eggs per female, egg production was 5.5×1011 (90% CI: 3.5×1011, 7.7×1011), but egg availability for shorebirds also depended on overlap between horseshoe crab and shorebird migrations, density-dependent bioturbation, and wave-mediated vertical transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over a century of fi shery and oceanographic research conducted along the Atlantic coast of the United States has resulted in many publications using unofficial, and therefore unclear, geographic names for certain study areas. Such improper usage, besides being unscholarly, has and can lead to identification problems for readers unfamiliar with the area. Even worse, the use of electronic data bases and search engines can provide incomplete or confusing references when improper wording is used. The two terms used improperly most often are “Middle Atlantic Bight” and “South Atlantic Bight.” In general, the term “Middle Atlantic Bight” usually refers to an imprecise coastal area off the middle Atlantic states of New York, New Jersey, Delaware, Maryland, and Virginia, and the term “South Atlantic Bight” refers to the area off the southeastern states of North Carolina, South Carolina, Georgia, and Florida’s east coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue (Callinectes sapidus)(Portunidae),lady (Ovalipes ocellatus)(Portunidae), and Atlantic rock (Cancer irroratus) (Cancridae) crabs inhabit estuaries on the northeast United States coast for parts or all of their life cycles. Their distributions overlap or cross during certain seasons. During a 1991–1994 monthly otter trawl survey in the Hudson-Raritan Estuary between New York and New Jersey, blue and lady crabs were collected in warmer months and Atlantic rock crabs in colder months. Sex ratios, male:female, of mature crabs were 1:2.0 for blue crabs, 1:3.1 for lady crabs, and 21.4:1 for Atlantic rock crabs. Crabs, 1286 in total, were subsampled for dietary analysis, and the dominant prey taxa for all crabs, by volume of foregut contents, were mollusks and crustaceans. The proportion of amphipods and shrimp in diets decreased as crab size increased. Trophic niche breadth was widest for blue crabs, narrower for lady crabs, and narrowest for Atlantic rock crabs. Trophic overlap was lowest between lady crabs and Atlantic rock crabs, mainly because of frequent consumption of the dwarf surfclam (Mulinia lateralis) by the former and the blue mussel (Mytilus edulis) by the latter. The result of cluster analysis showed that size class and location of capture of predators in the estuary were more influential on diet than the species or sex of the predators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net catches from 1985–86 to 1994–95 at Pivers Island, North Carolina, indicated that glass-eel stage American eels (Anguilla rostrata) were recruited to the estuary from November to early May, with peak numbers in January, February, and March. There was no declining trend in recruitment over the years of sampling. Except for one year, there was no clear seasonal decrease in mean length. But shorter glass eels were older than longer glass eels, as judged by age within the glass eel growth zone of the otolith, suggesting that smaller fish took longer to arrive. The mean age of glass eels collected from the lower estuary and a freshwater site 9.5 km upriver differed by 8.4 d (36.2 vs. 44.6, respectively). Outer increments (30–35) of the otolith growth zone of glass eels from North Carolina were significantly wider than corresponding increments of otoliths from New Brunswick. Mean total ages of North Carolina, New Jersey, and New Brunswick elvers were 175.4, 201.2, and 209.3 d, corresponding to mean lengths of 55.9, 60.9, and 58.1 mm TL, respectively. The mean durations of glass-eel growth zones (44.6, 62.3, and 69.8) were in close agreement with those from previous studies, but total ages were not. This suggested that perhaps some finer (leptocephalus stage) increments were not detected by light microscopy, differences occurred in seasonal increment deposition, or absorption of the otolith material may have taken place during metamorphosis, rendering the aging of larvae inaccurate. Judging from the long recruitment period and seasonal uniformity in both mean age and length found in our study, the spawning period of American eels may be somewhat more protracted than previously considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Elsevier Inc.Links between emission trading programs are not immutable, as highlighted by New Jersey's exit from the Regional Greenhouse Gas Initiative in 2011. This raises the question of what to do with existing permits that are banked for future use-choices that have consequences for market behavior in advance of, or upon speculation about, delinking. We consider two delinking policies. One differentiates banked permits by origin, the other treats banked permits the same. We describe the price behavior and relative cost-effectiveness of each policy. Treating permits differently generally leads to higher costs, and may lead to price divergence, even with only speculation about delinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of determining the level of care and specific postacute care facility for stroke patients has not been adequately studied. The objective of this study was to better understand the factors that influence postacute care decisions by surveying stroke discharge planners. Requests were sent to discharge planners at 471 hospitals in the Northeast United States to complete an online survey regarding the factors impacting the selection of postacute care. Seventy-seven (16%) discharge planners completed the online survey. Respondents were mainly nurses and social workers and 73% reported ≥20 years healthcare experience. Patients and families were found to be significantly more influential than physicians (P < 0.001) and other clinicians (P = 0.04) in influencing postdischarge care. Other clinicians were significantly more influential than physicians (P < 0.001). Insurance and quality of postacute care were the factors likely to most affect the selection of postacute care facility. Insurance was also identified as the greatest barrier in the selection of level of postacute care (70%; P < 0.001) and specific postacute care facility (46%; P = 0.02). More than half reported that pressure to discharge patients quickly impacts a patients' final destination. Nonclinical factors are perceived by discharge planners to have a major influence on postacute stroke care decision making.