979 resultados para Organic-synthesis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel triptycene-based dianhydride, 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride, was prepared from 4-nitro-N-methylphthalimide and potassium phenolate of 1,4-dihydroxytriptycene (1). The aromatic nucleophilic substitution reaction between 4-nitro-N-methylphthalimide and I afforded triptycene-based bis(N-methylphthalimide) (2), which hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). A series of new polyimides containing triptycene moieties were prepared from the dianhydride monomer (3) and various diamines in in-cresol via conventional one-step polycondensation method. Most of the resulting polyimides were soluble in common organic solvents, such as chloroform, THF, DMAc and DMSO. The polyimides exhibited excellent thermal and thermo-oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature ranging from 448 to 486 degrees C and 526 to 565 degrees C in nitrogen atmosphere, respectively. The glass transition temperatures of the polyimides were in the range of 221-296 degrees C. The polyimide films were found to be transparent, flexible, and tough. The films had tensile strengths, elongations at break, and tensile moduli in the ranges 95-118 MPa, 5.3-16.2%, and 1.03-1.38 GPa, respectively. Wide-angle X-ray diffraction measurements revealed that these polyimides were amorphous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of dianhydride monomers, 2,2'-disubstituted-4,4',5,5'-biphenyltetracarboxylic dianhydride (substituents = phenoxy, p-methylphenoxy, p-tert-butylphenoxy, nitro, and methoxy) were synthesized by the nitration of an N-methyl protected 3,3',4,4'-biphenyttetracarboxylic dianhydride (BPDA) and subsequent aromatic nucleophilic substitutions with aroxides (NaOAr) or methoxide. These dianhydrides were polymerized with various aromatic diamines in refluxing m-cresol containing isoquinoline to afford a series of aromatic polyintides. The effects of varying 2,2'-substituents of the dianhydride (BPDA) moiety on the properties of polyimides were investigated. It was found that polyimides from the dianhydrides containing phenoxy, p-methylphenoxy, and p-tert-butylphenoxy side groups possessed excellent solubility and film forming capability whereas polyimides from 2,2'-dinitro-BPDA and 2,2'-dimethoxy-BPDA were less soluble in organic solvent. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 102-168 MPa, 8-21%, 2.02-2.38 GPa, respectively. The polymer gas permeability coefficients (P) and ideal selectivities for N-2, O-2, CO2 and CH4 were determined for the -OAr substituted polyimides. The oxygen permeability coefficient (P-O2) and permselectivity of oxygen to nitrogen (PO2/N-2) of the films were in the ranges 3.4-11.3 barrer and 3.8-4.6, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LaF3 : Eu3+ (5.0 mol-% EU3+) nanodisks with perfect crystallinity were successfully synthesized by a simple method. The synthesis was carried out in an aqueous solution at room temperature without the use of templates or organic additives, The mechanism of formation of the nanodisks was explored, and the fluoride source (KBF4) is believed to play a key role in controlling the morphology of the final product. Furthermore, the size of the disk can be simply moderated by varying the concentration of the initial reactants. The room-temperature photoluminescence of LaF3 : Eu3+ with different morphologies and sizes were also investigated, and the results indicate that the emission intensity of the product is strongly affected by their size, shape, and other factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and efficient one-pot synthesis of highly substituted pyridin-2(1H)-ones is developed via the Vilsmeier-Haack reaction of readily available 1-acetyl,1-carbamoyl cyclopropanes, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A convenient and efficient synthesis of highly substituted pyrrolin-4-ones is developed via the PIFA-mediated cyclization reactions of readily available enaminones, and a mechanism involving sequential cleavage of N-C bond, formation of new N-C bond, intramolecular addition reaction, and benzilic acid type rearrangement is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and efficient one-pot synthesis of highly substituted pyridin-2(IH)-ones was developed via Vilsmeier-Haack reactions of readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One inorganic-organic hybrid and two host-guest complexes were synthesized from calix[4] arene tetra acetic ether derivative( C60H80O12, L) and potassium polyoxometalates. The structures of the complexes were characterized with the elemental analysis, IR, TG-DTA and X-crystallographic. X-ray crystallographic studies reveal the formation of an ionic crystal, which contains a calix-cluster and calix-cluster-calix line array, and belongs to a typical inorganic-organic hybrid ( complex 1) or has a host-guest structure ( complex 2 and 3). The results of cyclic voltammograms at different scanning rates showed that the anode peak current of complex 1 was proportional to the square root of the scanning rate and the charge transfer process was controlled by pervasion. The anode peak current of complexes 2 and 3 was proportional to the scanning rate and the charge transfer process was controlled by the surface. The results suggest that there are consanguineous relationship between the anode reaction and the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A triblock copolymer PLA-b-AP-b-PLA (PAP) of polylactide (PLA) and aniline pentamer (AP) with the unique properties of being both electroactive and biodegradable is synthesized by coupling an electroactive carboxyl-capped AP with two biodegradable bihydroxyl-capped PLAs via a condensation reaction. Three different molecule weight PAP copolymers are prepared. The PAP copolymers exhibit excellent electroactivity similar to the AP and polyaniline, which may stimulate cell proliferation and differentiation. The electrical conductivity of the PAP2 copolymer film (similar to 5 x 10(-6) S/cm) is in the semiconducting region. Transmission electron microscopic results suggest that there is microphase separation of the two block segments in the copolymer, which might contribute to the observed conductivity. The biodegradation and biocompatibility experiments in vitro prove the copolymer is biodegradable and biocompatible. Moreover, these new block copolymer shows good solubility in common organic solvents, leading to the system with excellent processibility. These biodegradable PAP copolymers with electroactive function thus possess the properties that would be potentially used as scaffold materials for neuronal or cardiovascular tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two orange phosphorescent iridium complex monomers, 9-hexyl-9-(iridium (III)bis(2-(4'-fluorophenyl)-4-phenylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-PIr) and 9-hexyl-9-(iridium(III)bis(2-(4'-fluorophenyl)-4-methylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-MIr), were successfully synthesized. The Suzuki polycondensation of 2,7-bis(trimethylene boronate)-9,9-dioctylfluorene with 2,7-dibromo-9,9-dioetylfluorene and Br-Plr or Br-MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5-3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue- and orange-emission peaks. A white-light-emitting diode with a configuration of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br-PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br-MIr) was employed as the white-emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient synthetic procedures for the preparation of beta-trithiophenes (dithieno[2,3-b:3',2'-d]thiophene) and two macrocyclic compounds, tetra[2,3-thienylene] and hexa[2,3-thienylene] bearing trimethylsilyl (TMS) groups from 2,2'-dibromo-5,5'-bistrimethylsilanyl[3,3']bithiophenyl are reported. The UV-Vis spectra property and crystal structures of these macrocyclic oligothiophenes are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of optically active poly(ester imide)s (PEsI's) has been synthesized by the polycondensation reactions of new axially asymmetric dianhydrides, that is, (R)-2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride and (S)-2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride, and various diamines with aromatic, semiaromatic, and aliphatic structures. The polymers have inherent viscosities of 0.45-0.70 dL/g, very good solubility in common organic solvents, glass-transition temperatures of 124-290 degreesC, and good thermal stability. Wide-angle X-ray crystallography of these polymers shows no crystal diffraction. In comparison with model compounds, an enhanced optical rotatory power has been observed for the repeat unit of optically active PEsI's based on aromatic diamines, and it has been attributed to a collaborative asymmetric perturbation of chiral 1,1'-binaphthyls along the rigid backbones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of eight new polyquinolines and polyanthrazolines with pyrrole isomeric units in main chain were synthesized and characterized. The new polymers showed high glass transition temperatures (T-g = 242-339 degreesC) and excellent thermal stability (T-5% = 398-536 degreesC in air, TGA). Compared to the series of polyanthrazolines, the series of polyquinolines exhibited higher thermal stability, better solubility in common organic solvents, and lower maximum absorption wavelengths (lambda(max)(a)). Polyanthrazolines with 2,5-pyrrole linkage showed an unusually high lambda(max)(a) (565 nm) and small band gap (2.02 eV). All polymers in solution had low photoluminescence quantum yields between 10(-2%) and 10(-5%) and excited-state lifetimes of 0.28-1.29 ns. The effects of molecular structure, especially pyrrole linkage structures, on the electronic structure, thermodynamics, and some of the optical properties of the polymers were explored. A model of hydrogen bonds in the main chain of the polymers was suggested to explain the difference in the properties of the isomer polymers. In addition, a polyquinoline (PBM) was chosen to examine the proton conductivity; the result indicated that the PBM/H3PO4 complex exhibited a high conductivity of 1.5 x 10(-3) S cm(-1) at 157 degreesC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel PPV derivatives (PCA8-PV and PCA8-MEHPV) containing N-phenyl-carbazole units on the back-bone were successfully synthesized by the Wittig polycondensation of 3,6-bisformyl-N-(4-octyloxy-phenyl)carbazole with the corresponding tributyl phosphonium salts in good yields. The newly formed and dominant trans vinylene double bonds were confirmed by FT-IR and NMR spectroscopy. The polymers (with (M) over bar (w) of 6289 for PCA8-PV and 7387 for PCA8-MEHPV) were soluble in common organic solvents and displayed high thermal stability (T(g)s are 110.7 degreesC for PCA8-PV and 92.2 degreesC for PCA8-MEHPV, respectively) because of the incorporation of the N-phenyl-carbazole units. Cyclic voltammetry investigations (onsets: 0.8 V for PCA8-PV and 0.7 V for PCA8-MEHPV) suggested that the polymers possess enhanced hole injection/transport properties, which can be also attributed to the N-phenyl-carbazole units on the backbone. Both the single-layer and the double-layer light-emitting diodes (LEDs) that used the polymers as the active layer emitted a greenish-blue or bluish-green light (the maximum emissions located 494 nm for PCA8-PV and 507 nm for PCA8-MEHPV, respectively).