904 resultados para Optimal Linear Control
Resumo:
Two experiments were conducted to estimate the standardized ileal digestible (SID) Trp:Lys ratio requirement for growth performance of nursery pigs. Experimental diets were formulated to ensure that lysine was the second limiting AA throughout the experiments. In Exp. 1 (6 to 10 kg BW), 255 nursery pigs (PIC 327 × 1050, initially 6.3 ± 0.15 kg, mean ± SD) arranged in pens of 6 or 7 pigs were blocked by pen weight and assigned to experimental diets (7 pens/diet) consisting of SID Trp:Lys ratios of 14.7%, 16.5%, 18.4%, 20.3%, 22.1%, and 24.0% for 14 d with 1.30% SID Lys. In Exp. 2 (11 to 20 kg BW), 1,088 pigs (PIC 337 × 1050, initially 11.2 kg ± 1.35 BW, mean ± SD) arranged in pens of 24 to 27 pigs were blocked by average pig weight and assigned to experimental diets (6 pens/diet) consisting of SID Trp:Lys ratios of 14.5%, 16.5%, 18.0%, 19.5%, 21.0%, 22.5%, and 24.5% for 21 d with 30% dried distillers grains with solubles and 0.97% SID Lys. Each experiment was analyzed using general linear mixed models with heterogeneous residual variances. Competing heteroskedastic models included broken-line linear (BLL), broken-line quadratic (BLQ), and quadratic polynomial (QP). For each response, the best-fitting model was selected using Bayesian information criterion. In Exp. 1 (6 to 10 kg BW), increasing SID Trp:Lys ratio linearly increased (P < 0.05) ADG and G:F. For ADG, the best-fitting model was a QP in which the maximum ADG was estimated at 23.9% (95% confidence interval [CI]: [<14.7%, >24.0%]) SID Trp:Lys ratio. For G:F, the best-fitting model was a BLL in which the maximum G:F was estimated at 20.4% (95% CI: [14.3%, 26.5%]) SID Trp:Lys. In Exp. 2 (11 to 20 kg BW), increasing SID Trp:Lys ratio increased (P < 0.05) ADG and G:F in a quadratic manner. For ADG, the best-fitting model was a QP in which the maximum ADG was estimated at 21.2% (95% CI: [20.5%, 21.9%]) SID Trp:Lys. For G:F, BLL and BLQ models had comparable fit and estimated SID Trp:Lys requirements at 16.6% (95% CI: [16.0%, 17.3%]) and 17.1% (95% CI: [16.6%, 17.7%]), respectively. In conclusion, the estimated SID Trp:Lys requirement in Exp. 1 ranged from 20.4% for maximum G:F to 23.9% for maximum ADG, whereas in Exp. 2 it ranged from 16.6% for maximum G:F to 21.2% for maximum ADG. These results suggest that standard NRC (2012) recommendations may underestimate the SID Trp:Lys requirement for nursery pigs from 11 to 20 kg BW.
Resumo:
En la actualidad, la gestión de embalses para el control de avenidas se realiza, comúnmente, utilizando modelos de simulación. Esto se debe, principalmente, a su facilidad de uso en tiempo real por parte del operador de la presa. Se han desarrollado modelos de optimización de la gestión del embalse que, aunque mejoran los resultados de los modelos de simulación, su aplicación en tiempo real se hace muy difícil o simplemente inviable, pues está limitada al conocimiento de la avenida futura que entra al embalse antes de tomar la decisión de vertido. Por esta razón, se ha planteado el objetivo de desarrollar un modelo de gestión de embalses en avenidas que incorpore las ventajas de un modelo de optimización y que sea de fácil uso en tiempo real por parte del gestor de la presa. Para ello, se construyó un modelo de red Bayesiana que representa los procesos de la cuenca vertiente y del embalse y, que aprende de casos generados sintéticamente mediante un modelo hidrológico agregado y un modelo de optimización de la gestión del embalse. En una primera etapa, se generó un gran número de episodios sintéticos de avenida utilizando el método de Monte Carlo, para obtener las lluvias, y un modelo agregado compuesto de transformación lluvia- escorrentía, para obtener los hidrogramas de avenida. Posteriormente, se utilizaron las series obtenidas como señales de entrada al modelo de gestión de embalses PLEM, que optimiza una función objetivo de costes mediante programación lineal entera mixta, generando igual número de eventos óptimos de caudal vertido y de evolución de niveles en el embalse. Los episodios simulados fueron usados para entrenar y evaluar dos modelos de red Bayesiana, uno que pronostica el caudal de entrada al embalse, y otro que predice el caudal vertido, ambos en un horizonte de tiempo que va desde una a cinco horas, en intervalos de una hora. En el caso de la red Bayesiana hidrológica, el caudal de entrada que se elige es el promedio de la distribución de probabilidad de pronóstico. En el caso de la red Bayesiana hidráulica, debido al comportamiento marcadamente no lineal de este proceso y a que la red Bayesiana devuelve un rango de posibles valores de caudal vertido, se ha desarrollado una metodología para seleccionar un único valor, que facilite el trabajo del operador de la presa. Esta metodología consiste en probar diversas estrategias propuestas, que incluyen zonificaciones y alternativas de selección de un único valor de caudal vertido en cada zonificación, a un conjunto suficiente de episodios sintéticos. Los resultados de cada estrategia se compararon con el método MEV, seleccionándose las estrategias que mejoran los resultados del MEV, en cuanto al caudal máximo vertido y el nivel máximo alcanzado por el embalse, cualquiera de las cuales puede usarse por el operador de la presa en tiempo real para el embalse de estudio (Talave). La metodología propuesta podría aplicarse a cualquier embalse aislado y, de esta manera, obtener, para ese embalse particular, diversas estrategias que mejoran los resultados del MEV. Finalmente, a modo de ejemplo, se ha aplicado la metodología a una avenida sintética, obteniendo el caudal vertido y el nivel del embalse en cada intervalo de tiempo, y se ha aplicado el modelo MIGEL para obtener en cada instante la configuración de apertura de los órganos de desagüe que evacuarán el caudal. Currently, the dam operator for the management of dams uses simulation models during flood events, mainly due to its ease of use in real time. Some models have been developed to optimize the management of the reservoir to improve the results of simulation models. However, real-time application becomes very difficult or simply unworkable, because the decision to discharge depends on the unknown future avenue entering the reservoir. For this reason, the main goal is to develop a model of reservoir management at avenues that incorporates the advantages of an optimization model. At the same time, it should be easy to use in real-time by the dam manager. For this purpose, a Bayesian network model has been developed to represent the processes of the watershed and reservoir. This model learns from cases generated synthetically by a hydrological model and an optimization model for managing the reservoir. In a first stage, a large number of synthetic flood events was generated using the Monte Carlo method, for rain, and rain-added processing model composed of runoff for the flood hydrographs. Subsequently, the series obtained were used as input signals to the reservoir management model PLEM that optimizes a target cost function using mixed integer linear programming. As a result, many optimal discharge rate events and water levels in the reservoir levels were generated. The simulated events were used to train and test two models of Bayesian network. The first one predicts the flow into the reservoir, and the second predicts the discharge flow. They work in a time horizon ranging from one to five hours, in intervals of an hour. In the case of hydrological Bayesian network, the chosen inflow is the average of the probability distribution forecast. In the case of hydraulic Bayesian network the highly non-linear behavior of this process results on a range of possible values of discharge flow. A methodology to select a single value has been developed to facilitate the dam operator work. This methodology tests various strategies proposed. They include zoning and alternative selection of a single value in each discharge rate zoning from a sufficient set of synthetic episodes. The results of each strategy are compared with the MEV method. The strategies that improve the outcomes of MEV are selected and can be used by the dam operator in real time applied to the reservoir study case (Talave). The methodology could be applied to any single reservoir and, thus, obtain, for the particular reservoir, various strategies that improve results from MEV. Finally, the methodology has been applied to a synthetic flood, obtaining the discharge flow and the reservoir level in each time interval. The open configuration floodgates to evacuate the flow at each interval have been obtained applying the MIGEL model.
Resumo:
This paper discusses a model based on the agency theory to analyze the optimal transfer of construction risk in public works contracts. The base assumption is that of a contract between a principal (public authority) and an agent (firm), where the payment mechanism is linear and contains an incentive mechanism to enhance the effort of the agent to reduce construction costs. A theoretical model is proposed starting from a cost function with a random component and assuming that both the public authority and the firm are risk averse. The main outcome of the paper is that the optimal transfer of construction risk will be lower when the variance of errors in cost forecast, the risk aversion of the firm and the marginal cost of public funds are larger, while the optimal transfer of construction risk will grow when the variance of errors in cost monitoring and the risk aversion of the public authority are larger
Resumo:
The three-dimensional wall-bounded open cavity may be considered as a simplified geometry found in industrial applications such as leading gear or slotted flats on the airplane. Understanding the three-dimensional complex flow structure that surrounds this particular geometry is therefore of major industrial interest. At the light of the remarkable former investigations in this kind of flows, enough evidences suggest that the lateral walls have a great influence on the flow features and hence on their instability modes. Nevertheless, even though there is a large body of literature on cavity flows, most of them are based on the assumption that the flow is two-dimensional and spanwise-periodic. The flow over realistic open cavity should be considered. This thesis presents an investigation of three-dimensional wall-bounded open cavity with geometric ratio 6:2:1. To this aim, three-dimensional Direct Numerical Simulation (DNS) and global linear instability have been performed. Linear instability analysis reveals that the onset of the first instability in this open cavity is around Recr 1080. The three-dimensional shear layer mode with a complex structure is shown to be the most unstable mode. I t is noteworthy that the flow pattern of this high-frequency shear layer mode is similar to the observed unstable oscillations in supercritical unstable case. DNS of the cavity flow carried out at different Reynolds number from steady state until a nonlinear saturated state is obtained. The comparison of time histories of kinetic energy presents a clearly dominant energetic mode which shifts between low-frequency and highfrequency oscillation. A complete flow patterns from subcritical cases to supercritical case has been put in evidence. The flow structure at the supercritical case Re=1100 resembles typical wake-shedding instability oscillations with a lateral motion existed in the subcritical cases. Also, This flow pattern is similar to the observations in experiments. In order to validate the linear instability analysis results, the topology of the composite flow fields reconstructed by linear superposition of a three-dimensional base flow and its leading three-dimensional global eigenmodes has been studied. The instantaneous wall streamlines of those composited flows display distinguish influence region of each eigenmode. Attention has been focused on the leading high-frequency shear layer mode; the composite flow fields have been fully recognized with respect to the downstream wave shedding. The three-dimensional shear layer mode is shown to give rise to a typical wake-shedding instability with a lateral motions occurring downstream which is in good agreement with the experiment results. Moreover, the spanwise-periodic, open cavity with the same length to depth ratio has been also studied. The most unstable linear mode is different from the real three-dimensional cavity flow, because of the existence of the side walls. Structure sensitivity of the unstable global mode is analyzed in the flow control context. The adjoint-based sensitivity analysis has been employed to localized the receptivity region, where the flow is more sensible to momentum forcing and mass injection. Because of the non-normality of the linearized Navier-Stokes equations, the direct and adjoint field has a large spatial separation. The strongest sensitivity region is locate in the upstream lip of the three-dimensional cavity. This numerical finding is in agreement with experimental observations. Finally, a prototype of passive flow control strategy is applied.