983 resultados para Operating environment indicator
Resumo:
Thisthesis supplements the systematic approach to competitive intelligence and competitor analysis by introducing an information-processing perspective on management of the competitive environment and competitors therein. The cognitive questions connected to the intelligence process and also the means that organizational actors use in sharing information are discussed. The ultimate aim has been to deepen knowledge of the different intraorganizational processes that are used in acorporate organization to manage and exploit the vast amount of competitor information that is received from the environment. Competitor information and competitive knowledge management is examined as a process, where organizational actorsidentify and perceive the competitive environment by using cognitive simplification, make interpretations resulting in learning and finally utilize competitor information and competitive knowledge in their work processes. The sharing of competitive information and competitive knowledge is facilitated by intraorganizational networks that evolve as a means of developing a shared, organizational level knowledge structure and ensuring that the right information is in the right place at the right time. This thesis approaches competitor information and competitive knowledge management both theoretically and empirically. Based on the conceptual framework developed by theoretical elaboration, further understanding of the studied phenomena is sought by an empirical study. The empirical research was carried out in a multinationally operating forest industry company. This thesis makes some preliminary suggestions of improving the competitive intelligence process. It is concluded that managing competitor information and competitive knowledge is not simply a question of managing information flow or improving sophistication of competitor analysis, but the crucial question to be solved is rather, how to improve the cognitive capabilities connected to identifying and making interpretations of the competitive environment and how to increase learning. It is claimed that competitive intelligence can not be treated like an organizational function or assigned solely to a specialized intelligence unit.
Resumo:
Technological development brings more and more complex systems to the consumer markets. The time required for bringing a new product to market is crucial for the competitive edge of a company. Simulation is used as a tool to model these products and their operation before actual live systems are built. The complexity of these systems can easily require large amounts of memory and computing power. Distributed simulation can be used to meet these demands. Distributed simulation has its problems. Diworse, a distributed simulation environment, was used in this study to analyze the different factors that affect the time required for the simulation of a system. Examples of these factors are the simulation algorithm, communication protocols, partitioning of the problem, distributionof the problem, capabilities of the computing and communications equipment and the external load. Offices offer vast amounts of unused capabilities in the formof idle workstations. The use of this computing power for distributed simulation requires the simulation to adapt to a changing load situation. This requires all or part of the simulation work to be removed from a workstation when the owner wishes to use the workstation again. If load balancing is not performed, the simulation suffers from the workstation's reduced performance, which also hampers the owner's work. Operation of load balancing in Diworse is studied and it is shown to perform better than no load balancing, as well as which different approaches for load balancing are discussed.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
La pérdida de autonomía a edades avanzadas no se asocia únicamente con el envejecimiento sino también con características del entorno físico y social. Investigaciones recientes han demostrado que la red social, la integración social y la participación, actúan como predictores de la discapacidad en la vejez. El objetivo de este trabajo es nalizar el efecto de la red social sobre el nivel de autonomía(en términos de discapacidad instrumental y básica) en etapas iniciales de la vejez.
Resumo:
One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s−1) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptakewas found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s−1, 30 cm s−1 (interpolated data) and 100 cm s−1 (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log Kow) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD b 10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.
Resumo:
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Resumo:
This paper aims to better understand the development of students’ learning processes when participating actively in a specific Computer Supported Collaborative Learning system called KnowCat. To this end, a longitudinal case study was designed, in which eighteen university students took part in a 12-month (two semesters) learning project. During this time period, the students followed an instructional process, using some elements of KnowCat (KnowCat key features) design to support and improve their interaction processes, especially peer learning processes. Our research involved both supervising the students’ collaborative learning processes throughout the learning project and focusing our analysis on the qualitative evolution of the students’ interaction processes and on the development of metacognitive learning processes. The results of the current research reveal that the instructional application of the CSCL-KnowCat system may favour and improve the development of the students’ metacognitive learning processes. Additionally, the implications of the design of computer supported collaborative learning networks and pedagogical issues are discussed in this paper.
Resumo:
Adverse childhood experiences have been described as one of the major environmental risk factors for depressive disorder. Likewise, the deleterious impact of early traumatic experiences on depression seems to be moderated by individual genetic variability. Serotonin transporter (5-HTT) and the Brain-Derived Neurotrophic Factor (BDNF) seem to modulate the effect of childhood adversity on adult depression, although inconsistencies across studies have been found. Moreover, the GxE interaction concerning the different types of childhood adversity remains poorly understood. The aim of this study is to analyse the putative interaction between the 5-HTT gene (5-HTTLPR polymorphism), BDNF gene (Val66Met polymorphism) and childhood adversity in accounting for adult depressive symptoms.
Resumo:
This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.
Resumo:
A sign of presence in virtual environments is that people respond to situations and events as if they were real, where response may be considered at many different levels, ranging from unconscious physiological responses through to overt behavior,emotions, and thoughts. In this paper we consider two responses that gave different indications of the onset of presence in a gradually forming environment. Two aspects of the response of people to an immersive virtual environment were recorded: their eye scanpath, and their skin conductance response (SCR). The scenario was formed over a period of 2 min, by introducing an increasing number of its polygons in random order in a head-tracked head-mounted display. For one group of experimental participants (n 8) the environment formed into one in which they found themselves standing on top of a 3 m high column. For a second group of participants (n 6) the environment was otherwise the same except that the column was only 1 cm high, so that they would be standing at normal ground level. For a third group of participants (n 14) the polygons never formed into a meaningful environment. The participants who stood on top of the tall column exhibited a significant decrease in entropy of the eye scanpath and an increase in the number of SCR by 99 s into the scenario, at a time when only 65% of the polygons had been displayed. The ground level participants exhibited a similar decrease in scanpath entropy, but not the increase in SCR. The random scenario grouping did not exhibit this decrease in eye scanpath entropy. A drop in scanpath entropy indicates that the environment had cohered into a meaningful perception. An increase in the rate of SCR indicates the perception of an aversive stimulus. These results suggest that on these two dimensions (scanpath entropy and rate of SCR) participants were responding realistically to the scenario shown in the virtual environment. In addition, the response occurred well before the entire scenario had been displayed, suggesting that once a set of minimal cues exists within a scenario,it is enough to form a meaningful perception. Moreover, at the level of the sympathetic nervous system, the participants who were standing on top of the column exhibited arousal as if their experience might be real. This is an important practical aspect of the concept of presence.
Resumo:
This paper presents the quantitative and qualitative findings from an experiment designed to evaluate a developing model of affective postures for full-body virtual characters in immersive virtual environments (IVEs). Forty-nine participants were each requested to explore a virtual environment by asking two virtual characters for instructions. The participants used a CAVE-like system to explore the environment. Participant responses and their impression of the virtual characters were evaluated through a wide variety of both quantitative and qualitative methods. Combining a controlled experimental approach with various data-collection methods provided a number of advantages such as providing a reason to the quantitative results. The quantitative results indicate that posture plays an important role in the communication of affect by virtual characters. The qualitative findings indicated that participants attribute a variety of psychological states to the behavioral cues displayed by virtual characters. In addition, participants tended to interpret the social context portrayed by the virtual characters in a holistic manner. This suggests that one aspect of the virtual scene colors the perception of the whole social context portrayed by the virtual characters. We conclude by discussing the importance of designing holistically congruent virtual characters especially in immersive settings.
Resumo:
Major oil spills can have long-term impacts since oil pollution does not only result in acute mortality of marine organisms, but also affects productivity levels, predator-prey dynamics, and damages habitats that support marine communities. However, despite the conservation implications of oil accidents, the monitoring and assessment of its lasting impacts still remains a difficult and daunting task. Here, we used European shags to evaluate the overall, lasting effects of the Prestige oil spill (2002) on the affected marine ecosystem. Using δ15N and Hg analysis, we trace temporal changes in feeding ecology potentially related to alterations of the food web due to the spill. Using climatic and oceanic data, we also investigate the influence of North Atlantic Oscillation (NAO) index, the sea surface temperature (SST) and the chlorophyll a (Chl a) on the observed changes. Analysis of δ15N and Hg concentrations revealed that after the Prestige oil spill, shag chicks abruptly switched their trophic level from a diet based on a high percentage of demersal-benthic fish to a higher proportion of pelagic/semi-pelagic species. There was no evidence that Chl a, SST and NAO reflected any particular changes or severity in environmental conditions for any year or season that may explain the sudden change observed in trophic level. Thus, this study highlighted an impact on the marine food web for at least three years. Our results provide the best evidence to date of the long-term consequences of the Prestige oil spill. They also show how, regardless of wider oceanographic variability, lasting impacts on predator-prey dynamics can be assessed using biochemical markers. This is particularly useful if larger scale and longer term monitoring of all trophic levels is unfeasible due to limited funding or high ecosystem complexity.
Resumo:
Tämän työn tavoitteena on ollut liiketoimintasuunnitelman laatiminen ja sen jatkokehitys ohjelmistoteollisuudessa toimivalle yritykselle. Suunnitelman laadintaa varten työssä on aluksi selvitetty ohjelmistoteollisuutta toimialana, sen erityispiirteitä ja tulevaisuuden kehitysnäkymiä. Tämän jälkeen on tutkittu sellaisia strategisia elementtejä, jotka vaikuttavat yrityksen liiketoiminnan suunnitteluun ja itse liiketoimintasuunnitelman laadintaan. Selvitystyö on tehty kirjallisuuden ja internet-sivustojen perusteella ja niiden pohjalta on laadittu liiketoimintasuunnitelma Komartek Oyj:n vesi- ja ympäristöhuollon toimialalle. Lisäksi työssä on käsitelty eri ratkaisuvaihtoehtoja suunnitteluprosessissa esiintyneiden ongelmien ratkaisemiseksi, sekä esitetty toimenpiteitä, joilla suunnitelman laadintaa saadaan selkeytettyä.
Resumo:
Tutkimuksen tavoitteena on tarkastella tekijöitä, joista ydinosaaminen muodostuu, sekä sitä kuinka yritykset voisivat parhaiten hyödyntää omia resurssejaan ja osaamistaan tunnistetun ydinosaamisen avulla. Teoria osuudessa käydään läpi kuinka ydinosaaminen on kirjallisuudessa määritelty ja miten yritykset voivat sen määritellä sisäisesti itselleen. Empiirisessä osiossa käydään läpi Telecom Business Research Centerissä tehdyn kvantitatiivisen selvityksen pohjalta valitut kolme sisällöntuottaja case - yritystä sekä kuvataan näiden osaamista. Tiedot yrityksistä perustuvat niiden edustajille tehtyihin haastatteluihin ja heidän käsitykseensä omasta yrityksestään. Tämä näkemys on tutkimuksen kannalta äärimmäisen relevanttia, koska ydinosaamisen määrittely tehdään yrityksessä sisäisesti juuri haastatellun kaltaisten yrityksen ydintoimijoiden toimesta. Varsinaisten case -yritysten lisäksi käydään läpi käytännön tapaus action-oriented -tutkimusosuudessa. Tutkimusta ja siinä käsiteltyjä esimerkkejä tulisi hyödyntää yrityksen oman ydinosaamisselvityksen apuna prosessin varrella.