973 resultados para Open Channel Flow Controls
Resumo:
Extension of overthickened continental crust is commonly characterized by an early core complex stage of extension followed by a later stage of crustal-scale rigid block faulting. These two stages are clearly recognized during the extensional destruction of the Alpine orogen in northeast Corsica, where rigid block faulting overprinting core complex formation eventually led to crustal separation and the formation of a new oceanic backarc basin (the Ligurian Sea). Here we investigate the geodynamic evolution of continental extension by using a novel, fully coupled thermomechanical numerical model of the continental crust. We consider that the dynamic evolution is governed by fault weakening, which is generated by the evolution of the natural-state variables (i.e., pressure, deviatoric stress, temperature, and strain rate) and their associated energy fluxes. Our results show the appearance of a detachment layer that controls the initial separation of the brittle crust on characteristic listric faults, and a core complex formation that is exhuming strongly deformed rocks of the detachment zone and relatively undeformed crustal cores. This process is followed by a transitional period, characterized by an apparent tectonic quiescence, in which deformation is not localized and energy stored in the upper crust is transferred downward and causes self-organized mobilization of the lower crust. Eventually, the entire crust ruptures on major crosscutting faults, shifting the tectonic regime from core complex formation to wholesale rigid block faulting.
Resumo:
Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.
Resumo:
Chang S, Gomes CM, Hypolite JA, Marx J, Alanzi J, Zderic SA, Malkowicz B, Wein AJ, Chacko S. Detrusor overactivity is associated with downregulation of large-conductance calcium-and voltage-activated potassium channel protein. Am J Physiol Renal Physiol 298: F1416-F1423, 2010. First published April 14, 2010; doi: 10.1152/ajprenal.00595.2009.-Large-conductance voltage-and calcium-activated potassium (BK) channels have been shown to play a role in detrusor overactivity (DO). The goal of this study was to determine whether bladder outlet obstructioninduced DO is associated with downregulation of BK channels and whether BK channels affect myosin light chain 20 (MLC(20)) phosphorylation in detrusor smooth muscle (DSM). Partial bladder outlet obstruction (PBOO) was surgically induced in male New Zealand White rabbits. The rabbit PBOO model shows decreased voided volumes and increased voiding frequency. DSM from PBOO rabbits also show enhanced spontaneous contractions compared with control. Both BK channel alpha- and beta-subunits were significantly decreased in DSM from PBOO rabbits. Immunostaining shows BK beta mainly expressed in DSM, and its expression is much less in PBOO DSM compared with control DSM. Furthermore, a translational study was performed to see whether the finding discovered in the animal model can be translated to human patients. The urodynamic study demonstrates several overactive DSM contractions during the urine-filling stage in benign prostatic hyperplasia (BPH) patients with DO, while DSM is very quiet in BPH patients without DO. DSM biopsies revealed significantly less BK channel expression at both mRNA and protein levels. The degree of downregulation of the BK beta-subunit was greater than that of the BK alpha-subunit, and the downregulation of BK was only associated with DO, not BPH. Finally, the small interference (si) RNA-mediated downregulation of the BK beta-subunit was employed to study the effect of BK depletion on MLC(20) phosphorylation. siRNA-mediated BK channel reduction was associated with an increased MLC(20) phosphorylation level in cultured DSM cells. In summary, PBOO-induced DO is associated with downregulation of BK channel expression in the rabbit model, and this finding can be translated to human BPH patients with DO. Furthermore, downregulation of the BK channel may contribute to DO by increasing the basal level of MLC(20) phosphorylation.
Resumo:
Background. It is not known if the adjustment of antihypertensive therapy based on home blood pressure monitoring (HBPM) can improve blood pressure (BP) control among haemodialysis patients. Methods. This is an open randomized clinical trial. Hypertensive patients on haemodialysis were randomized to have the antihypertensive therapy adjusted based on predialysis BP measurements or HBPM. Before and after 6 months of follow-up, patients were submitted to ambulatory blood pressure monitoring (ABPM) for 24 h, HBPM during 1 week and echocardiogram. Results. A total of 34 and 31 patients completed the study in the HBPM and predialysis BP groups, respectively. At the end of study, the systolic (SBP) and diastolic (DBP) blood pressure during the interdialytic period measured by ABPM were significantly lower in the HBPM group in relation to the predialysis BP group (mean 24-h BP: 135 +/- 12 mmHg/76 +/- 7 mmHg versus 147 +/- 15 mmHg/79 +/- 8 mmHg; P < 0.05). In the HBPM analysis, the HBPM group showed a significant reduction only in SBP compared to the predialysis BP group (weekly mean: 144 +/- 21 mmHg versus 154 +/- 22 mmHg; P < 0.05). There were no differences between the HBPM and predialysis BP groups in relation to the left ventricular mass index at the end of the study (108 +/- 35 g/m(2) versus 110 +/- 33 g/m(2); P > 0.05). Conclusions. Decision making based on HBPM among haemodialysis patients has led to a better BP control during the interdialytic period in comparison with predialysis BP measurements. HBPM may be a useful adjuvant instrument for blood pressure control among haemodialysis patients.
Resumo:
This paper presents field measurements and numerical simulations of groundwater dynamics in the intertidal zone of a sandy meso-tidal beach. The study, focusing on vertical hydraulic gradients and pore water salinities, reveals that tides and waves provide important forcing mechanisms for flow and salt transport in the nearshore aquifer. Such forcing, interacting with the beach morphology, enhances the exchange between the aquifer and ocean. The spatial and temporal variations of vertical hydraulic gradients demonstrate the complexity and dynamic nature of the processes and the extent of mixing between fresh groundwater and seawater in a subterranean estuary''. These results provide evidence of a potentially important reaction zone in the nearshore aquifer driven by oceanic oscillations. Land-derived contaminants may undergo important biogeochemical transformations in this zone prior to discharge.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Many methods exist in the literature for identifying PEEP to set in ARDS patients following a lung recruitment maneuver (RM). We compared ten published parameters for setting PEEP following a RM. Methods: Lung injury was induced by bilateral lung lavage in 14 female Dorset sheep, yielding a PaO(2) 100-150 mmHg at F(I)O(2) 1.0 and PEEP 5 cmH(2)O. A quasi-static P-V curve was then performed using the supersyringe method; PEEP was set to 20 cmH(2)O and a RM performed with pressure control ventilation (inspiratory pressure set to 40-50 cmH(2)O), until PaO(2) + PaCO(2) > 400 mmHg. Following the RM, a decremental PEEP trial was performed. The PEEP was decreased in 1 cmH(2)O steps every 5 min until 15 cmH(2)O was reached. Parameters measured during the decremental PEEP trial were compared with parameters obtained from the P-V curve. Results: For setting PEEP, maximum dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), and minimum shunt calculated during the decremental PEEP trial, and the lower Pflex and point of maximal compliance increase on the inflation limb of the P-V curve (Pmci,i) were statistically indistinguishable. The PEEP value obtained using the deflation upper Pflex and the point of maximal compliance decrease on the deflation limb were significantly higher, and the true inflection point on the inflation limb and minimum PaCO(2) were significantly lower than the other variables. Conclusion: In this animal model of ARDS, dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), minimum shunt, inflation lower Pflex and Pmci,i yield similar values for PEEP following a recruitment maneuver.
Resumo:
Background Some children with juvenile idiopathic arthritis either do not respond, or are intolerant to, treatment with disease-modifying antirheumatic drugs, including anti-tumour necrosis factor (TNF) drugs. We aimed to assess the safety and efficacy of abatacept, a selective T-cell costimulation modulator, in children with juvenile idiopathic arthritis who had failed previous treatments. Methods We did a double-blind, randomised controlled withdrawal trial between February, 2004, and June, 2006. We enrolled 190 patients aged 6-17 years, from 45 centres, who had a history of active juvenile idiopathic arthritis; at least five active joints; and an inadequate response to, or intolerance to, at least one disease-modifying antirheumatic drug. All 190 patients were given 10 mg/kg of abatacept intravenously in the open-label period of 4 months. Of the 170 patients who completed this lead-in course, 47 did not respond to the treatment according to predefined American College of Rheumatology (ACR) paediatric criteria and were excluded. Of the patients who did respond to abatacept, arthritis, and 62 were randomly assigned to receive placebo at the same dose and timing. The primary endpoint was time to flare of arthritis. Flare was defined as worsening of 30% or more in at least three of six core variables, with at least 30% improvement in no more than one variable. We analysed all patients who were treated as per protocol. This trial is registered, number NCT00095173. Findings Flares of arthritis occurred in 33 of 62 (53%) patients who were given placebo and 12 of 60 (20%) abatacept patients during the double-blind treatment (p=0.0003). Median time to flare of arthritis was 6 months for patients given placebo (insufficient events to calculate IQR); insufficient events had occurred in the abatacept group for median time to flare to be assessed (p=0.0002). The risk of flare in patients who contined abatacept was less than a third of that for controls during that double-blind period (hazard ratio 0.31, 95% CI 0.16-0.95). During the double-blind period, the frequency of adverse events did not differ in the two treatment groups, Adverse events were recorded in 37 abatacept recipients (62%) and 34 (55%) placebo recipients (p=0.47); only two serious adverse events were reported, bouth in controls (p=0.50). Interpretation Selective modulation of T-cell costimulation with abatacept is a rational alternative treatment for children with juvenile idiopathic arthritis. Funding Bristol-Myers Squibb.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Our aim was to determine whether antenatal corticosteroids improve perinatal adaptation of the pulmonary circulation in lambs with lung hypoplasia (LH). LH was induced in 12 ovine fetuses between 105 and 140 days gestation (term similar to 147 days); in 6 of these the ewe was given a single dose of betamethasone (11.4 mg im) 24 hr before delivery (LH + B). All lambs, including a control group (n = 6), were delivered at similar to 140 days and ventilated for 2 hr during which arterial pressures, pulmonary blood flow (PBF), and ventilating pressure and flow were recorded. During ventilation, respiratory system compliance was lower in both LH + B and LH groups than in controls. Pulmonary vascular resistance (PVR) was lower in LH + B lambs than in LH lambs and similar to controls; PBF was reduced in LH lambs but was restored to control levels by betamethasone. The mean density of small arteries of LH + B lambs was similar to that of LH lambs (P = 0.06) and lower than in controls; the thickness of the media of small pulmonary arteries from LH + B lambs was similar to that in LH lambs and thicker than in controls. VEGF mRNA levels were not different between groups. PDGF mRNA levels in LH + B lambs were higher than in LH lambs; a similar trend (P = 0.06) was seen for PECAM-1. SP-C mRNA levels were greater in both LH and LH + B lambs than in controls. Effects of betamethasone were greater on indices of pulmonary circulation than ventilation. We conclude that a single dose of maternal betamethasone 24 hr prior to birth has significant favorable effects on the postnatal adaptation of the pulmonary circulation in lambs with LH.
Resumo:
Recently, mild AKI has been considered as a risk factor for mortality in different scenarios. We conducted a retrospective analysis of the risk factors for two distinct definitions of AKI after elective repair of aortic aneurysms. Logistic regression was carried out to identify independent risk factors for AKI ( defined as >= 25% or >= 50% increase in baseline SCr within 48 h after surgery, AKI 25% and AKI 50%, respectively) and for mortality. Of 77 patients studied ( mean age 68 +/- 10, 83% male), 57% developed AKI 25% and 33.7% AKI 50%. There were no differences between AKI and control groups regarding comorbidities and diameter of aneurysms. However, AKI patients needed a supra-renal aortic cross-clamping more frequently and were more severely ill. Overall in-hospital mortality was 27.3%, which was markedly higher in those requiring a supra-renal aortic cross-clamping. The risk factors for AKI 25% were suprarenal aortic cross-clamping ( odds ratio 5.51, 95% CI 1.05-36.12, p = 0.04) and duration of operation for AKI 25% ( OR 6.67, 95% CI 2.23-19.9, p < 0.001). For AKI 50%, in addition to those factors, post-operative use of vasoactive drugs remained as an independent factor ( OR 6.13, 95% CI 1.64-22.8, p = 0.005). The risk factors associated with mortality were need of supra-renal aortic cross-clamping ( OR 9.6, 95% CI 1.37-67.88, p = 0.02), development of AKI 50% ( OR 8.84, 95% CI 1.31-59.39, p = 0.02), baseline GFR lower than 49 mL/min ( OR 17.07, 95% CI 2.00 145.23, p = 0.009), and serum glucose > 118 mg/dL in the post-operative period ( OR 19.99, 95% CI 2.32-172.28, p = 0.006). An increase of at least 50% in baseline SCr is a common event after surgical repair of aortic aneurysms, particularly when a supra-renal aortic cross-clamping is needed. Along with baseline moderate chronic renal failure, AKI is an independent factor contributing to the high mortality found in this scenario.
Resumo:
Introduction: Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods: We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student`s t test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results: Thirty-one ARDS patients (A: PaO(2)/FiO(2) <= 200, 45 +/- 14 years, 16 males) and 11 controls (C:52 +/- 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 +/- 27.2%, C:76.7 +/- 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 +/- 35.2%, C:21.8 +/- 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 +/- 54.3 mu m, C:86.4 +/- 33.3 mu m, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P = 0.03). The extension of normal epithelium showed a positive correlation with PaO(2)/FiO(2) (r(2) = 0.34; P = 0.02) and a negative correlation with plateau pressure (r(2) = 0.27; P = 0.04). The extension of denuded epithelium showed a negative correlation with PaO(2)/FiO(2) (r(2) = 0.27; P = 0.04). Conclusions: Structural changes in small airways of patients with ARDS were characterized by epithelial denudation, inflammation and airway wall thickening with ECM remodeling. These changes are likely to contribute to functional airway changes in patients with ARDS.
Resumo:
In this paper, experiments to detect turbulent spots in the transitional boundary layers, formed on a flat plate in a free-piston shock tunnel how, are reported. Experiments indicate that thin-film heat-transfer gauges are suitable for identifying turbulent-spot activity and can be used to identify parameters such as the convection rate of spots and the intermittency of turbulence.
Resumo:
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.