955 resultados para Ontario, Lake (N.Y. and Ont.)--History--War of 1812--Maps.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of studying the stratigraphic and structural features of the Lake Basin Field and an adjacent area with special emphasis upon the ground water conditions present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT. Here we present datasets from a hydroacoustic survey in July 2011 at Lake Torneträsk, northern Sweden. Our hydroacoustic data exhibit lake floor morphologies formed by glacial erosion and accumulation processes, insights into lacustrine sediment accumulation since the beginning of deglaciation, and information on seismic activity along the Pärvie Fault. Features of glacial scouring with a high-energy relief, steep slopes, and relative reliefs of more than 50 m are observed in the large W-basin. The remainder of the lacustrine subsurface appears to host a broad variety of well preserved formations from glacial accumulation related to the last retreat of the Fennoscandian ice sheet. Deposition of glaciolacustrine and lacustrine sediments is focused in areas situated in proximity to major inlets. Sediment accumulation in distal areas of the lake seldom exceeds 2 m or is not observable. We assume that lack of sediment deposition in the lake is a result of different factors, including low rates of erosion in the catchment, a previously high lake level leading to deposition of sediments in higher elevated paleodeltas, tributaries carrying low suspension loads as a result of sedimentation in upstream lakes, and an overall low productivity in the lake. A clear off-shore trace of the Pärvie Fault could not be detected from our hydroacoustic data. However, an absence of sediment disturbance in close proximity to the presumed fault trace implies minimal seismic activity since deposition of the glaciolacustrine and lacustrine sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Lake Ohrid is probably of Pliocene age, and the oldest extant lake in Europe. In this study climatic and environmental changes during the last glacial-interglacial cycle are reconstructed using lithological, sedimentological, geochemical and physical proxy analysis of a 15-m-long sediment succession from Lake Ohrid. A chronological framework is derived from tephrochronology and radiocarbon dating, which yields a basal age of ca. 136 ka. The succession is not continuous, however, with a hiatus between ca. 97.6 and 81.7 ka. Sediment accumulation in course of the last climatic cycle is controlled by the complex interaction of a variety of climate-controlled parameters and their impact on catchment dynamics, limnology, and hydrology of the lake. Warm interglacial and cold glacial climate conditions can be clearly distinguished from organic matter, calcite, clastic detritus and lithostratigraphic data. During interglacial periods, short-term fluctuations are recorded by abrupt variations in organic matter and calcite content, indicating climatically-induced changes in lake productivity and hydrology. During glacial periods, high variability in the contents of coarse silt to fine sand sized clastic matter is probably a function of climatically-induced changes in catchment dynamics and wind activity. In some instances tephra layers provide potential stratigraphic markers for short-lived climate perturbations. Given their widespread distribution in sites across the region, tephra analysis has the potential to provide insight into variation in the impact of climate and environmental change across the Mediterranean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Disrupted sleep is a common complaint of individuals with alcohol use disorder and in abstinent alcoholics. Furthermore, among recovering alcoholics, poor sleep predicts relapse to drinking. Whether disrupted sleep in these populations results from prolonged alcohol use or precedes the onset of drinking is not known. The aim of this study was to examine the sleep electroencephalogram (EEG) in alcohol-naïve, parental history positive (PH+), and negative (PH-) boys and girls. METHODS All-night sleep EEG recordings in 2 longitudinal cohorts (child and teen) followed at 1.5 to 3 year intervals were analyzed. The child and teen participants were 9/10 and 15/16 years old at the initial assessment, respectively. Parental history status was classified by Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria applied to structured interviews (DIS-IV) resulting in 14 PH- and 10 PH+ children and 14 PH- and 10 PH+ teens. Sleep data were visually scored in 30-second epochs using standard criteria. Power spectra were calculated for EEG derivations C3/A2, C4/A1, O2/A1, O1/A2 for nonrapid eye movement (NREM) and rapid eye movement (REM) sleep. RESULTS We found no difference between PH+ and PH- individuals in either cohort for any visually scored sleep stage variable. Spectral power declined in both cohorts across assessments for NREM and REM sleep in all derivations and across frequencies independent of parental history status. With regard to parental history, NREM sleep EEG power was lower for the delta band in PH+ teens at both assessments for the central derivations. Furthermore, power in the sigma band for the right occipital derivation in both NREM and REM sleep was lower in PH+ children only at the initial assessment. CONCLUSIONS We found no gross signs of sleep disruption as a function of parental history. Modest differences in spectral EEG power between PH+ and PH- children and teens indicate that a marker of parental alcohol history may be detectable in teens at risk for problem drinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unroofing of the Black Mountains, Death Valley, California, has resulted in the exposure of 1.7 Ga crystalline basement, late Precambrian amphibolite facies metasedimentary rocks, and a Tertiary magmatic complex. The Ar-40/Ar-39 cooling ages, obtained from samples collected across the entire length of the range (>55 km), combined with geobarometric results from synextensional intrusions, provide time-depth constraints on the Miocene intrusive history and extensional unroofing of the Black Mountains. Data from the southeastern Black Mountains and adjacent Greenwater Range suggest unroofing from shallow depths between 9 and 10 Ma. To the northwest in the crystalline core of the range, biotite plateau ages from approximately 13 to 6.8 Ma from rocks making up the Death Valley turtlebacks indicate a midcrustal residence (with temperatures >300-degrees-C) prior to extensional unroofing. Biotite Ar-40/Ar-39 ages from both Precambrian basement and Tertiary plutons reveal a diachronous cooling pattern of decreasing ages toward the northwest, subparallel to the regional extension direction. Diachronous cooling was accompanied by dike intrusion which also decreases in age toward the northwest. The cooling age pattern and geobarometric constraints in crystalline rocks of the Black Mountains suggest denudation of 10-15 km along a northwest directed detachment system, consistent with regional reconstructions of Tertiary extension and with unroofing of a northwest deepening crustal section. Mica cooling ages that deviate from the northwest younging trend are consistent with northwestward transport of rocks initially at shallower crustal levels onto deeper levels along splays of the detachment. The well-known Amargosa chaos and perhaps the Badwater turtleback are examples of this "splaying" process. Considering the current distance of the structurally deepest samples away from moderately to steeply east tilted Tertiary strata in the southeastern Black Mountains, these data indicate an average initial dip of the detachment system of the order of 20-degrees, similar to that determined for detachment faults in west central Arizona and southeastern California. Beginning with an initially listric geometry, a pattern of footwall unroofing accompanied by dike intrusion progress northwestward. This pattern may be explained by a model where migration of footwall flexures occur below a scoop-shaped banging wall block. One consequence of this model is that gently dipping ductile fabrics developed in the middle crust steepen in the upper crust during unloading. This process resolves the low initial dips obtained here with mapping which suggests transport of the upper plate on moderately to steeply dipping surfaces in the middle and upper crust.