967 resultados para Omega Navigation System.
Resumo:
When you finish this chapter you should be able to: * understand how the public hospital system is funded by the Federal, state and territory governments * appreciate some of the major funding issues facing public hospitals in Australia * have a beginning understandingof casemix Deagnosis Related Groups (DRGs) * have insight into the position of the various interest groups funding public hospitals in Australia.
Resumo:
Subcarrier allocation scheme for Orthogonal Frequency Division Multiplexing(OFDM) based multiuser system is proposed. Most previous algorithms use greedy approach as a subcarrier allocation scheme until a conflict occurs or as an initial first round allocation with improvement steps carried out in next rounds. Our algorithm uses information obtained by the forced costs of a system that incur by a current allocation to make assignment decisions. This algorithm does not rely on greedy approach and therefore can also be considered as a substitute for first layer Greedy algorithms. Simulation results show that for two user case this algorithm gives better or equal allocation 80-90 percent of the time when compared with the greedy allocation.
Resumo:
In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.
Resumo:
Recent efforts in mission planning for underwater vehicles have utilised predictive models to aid in navigation, optimal path planning and drive opportunistic sampling. Although these models provide information at a unprecedented resolutions and have proven to increase accuracy and effectiveness in multiple campaigns, most are deterministic in nature. Thus, predictions cannot be incorporated into probabilistic planning frameworks, nor do they provide any metric on the variance or confidence of the output variables. In this paper, we provide an initial investigation into determining the confidence of ocean model predictions based on the results of multiple field deployments of two autonomous underwater vehicles. For multiple missions conducted over a two-month period in 2011, we compare actual vehicle executions to simulations of the same missions through the Regional Ocean Modeling System in an ocean region off the coast of southern California. This comparison provides a qualitative analysis of the current velocity predictions for areas within the selected deployment region. Ultimately, we present a spatial heat-map of the correlation between the ocean model predictions and the actual mission executions. Knowing where the model provides unreliable predictions can be incorporated into planners to increase the utility and application of the deterministic estimations.
Resumo:
Prior studies linking performance management systems (PMS) and organisational justice have examined how PMS influence procedural fairness. Our investigation differs from these studies. First, it examines fairness as an antecedent (instead of as a consequence) of the choice of PMS. Second, instead of conceptualising organisational fairness as procedural fairness, it relies on the impression management interpretation of organisational fairness. Hence, the study investigates how the need of senior managers to cultivate an impression of being fair is related to the choice of PMS systems and employee outcomes. Based on a sample of 276 employees, the results indicate that the need of senior management to cultivate an impression of being fair is associated with employee performance. They also indicate that a substantial component of these effects is indirect through the choice of comprehensive performance measures (CPM) and employee job satisfaction. These findings highlight the importance of organisational concern for workplace fairness as an antecedent of choice of CPM. From a theoretical perspective, the adoption of the impression management interpretation of organisational fairness contributes by providing new insights into the relationship between fairness and choice of PMS from a perspective that is different from those used in prior management accounting research.
Resumo:
This paper focuses on the implementation of a damping controller for the doubly fed induction generator (DFIG) system. Coordinated tuning of the damping controller to enhance the damping of the oscillatory modes is presented using bacterial foraging technique. The effect of the tuned damping controller on converter ratings of the DFIG system is also investigated. The results of both eigenvalue analysis and the time-domain simulation studies are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The improvement of the fault ride-through capability of the system is also demonstrated.
Resumo:
This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.
Resumo:
Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and - we conjecture - necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments.
Resumo:
BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.
Resumo:
Tower crane dismantling is one of the most dangerous activities in the construction industry. Tower crane erection and dismantlement causes 10–12% of the fatalities of all crane accidents. The nature of the task is such that off-the-job training is not practicable, and the knowledge and expertise needed has to be gained on the job. However, virtual trainers such as Microsoft Flight Simulator for airplane pilots and mission rehearsal exercise (MRE) for army personnel have been developed and are known to provide a highly successful means of overcoming the risks involved in such on-the-job learning and clearly have potential in construction situations. This paper describes the newly developed multiuser virtual safety training system (MVSTS) aimed at providing a similar learning environment for those involved in tower crane dismantlement. The proposed training system is developed by modifying an existing game engine. Within the close-to-reality virtual environment, trainees can participate in a virtual dismantling process. During the process, they learn the correct dismantling procedure and working location and to cooperate with other trainees by virtually dismantling the crane. The system allows the trainees to experience the complete procedure in a risk-free environment. A case study is provided to demonstrate how the system works and its practical application. The proposed system was evaluated by interviews with 30 construction experts with different backgrounds, divided into three groups according to their experience and trained by the traditional and virtual methods, respectively. The results indicate that the trainees of the proposed system generally learned better than those using the traditional method. The ratings also indicate that the system generally has great potential as a training platform.
Resumo:
The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST) collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup.
Resumo:
To investigate the effects of adopting a pull system in assembly lines in contrast to a push system, simulation software called “ARENA” is used as a tool in order to present numerical results from both systems. Simulation scenarios are created to evaluate the effects of attributes changing in assembly systems, with influential factors including the change of manufacturing system (push system to pull system) and variation of demand. Moreover, pull system manufacturing consists of the addition attribute, which is the number of buffer storage. This paper will provide an analysis based on a previous case study, hence process time and workflow refer to the journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” [2]. The implementation of the pull system mechanism is to produce a system improvement in terms of the number of Work-In-Process (WIP), total time of products in the system, and the number of finished product inventory, while retaining the same throughput.
Resumo:
Recently, a stream of project management research has recognized the critical role of boundary objects in the organization of projects. In this paper, we investigate how one advanced scheduling tool, the Integrated Master Schedule (IMS), is used as a temporal boundary object at various stages of complex projects. The IMS is critical to megaprojects which typically span long periods of time and face a high degree of complexity and uncertainty. In this paper, we conceptualize projects of this type as complex adaptive systems (CAS). We report the findings of four case projects on how the IMS mapped interactions, interdependencies, constraints, and fractal patterns of these emerging projects, and how the process of IMS visualization enabled communication and negotiation of project realities. This paper highlights that this advanced timeline tool acts as a boundary object and elicits shared understanding of complex projects from their stakeholders.
Resumo:
With the advent of large-scale wind farms and their integration into electrical grids, more uncertainties, constraints and objectives must be considered in power system development. It is therefore necessary to introduce risk-control strategies into the planning of transmission systems connected with wind power generators. This paper presents a probability-based multi-objective model equipped with three risk-control strategies. The model is developed to evaluate and enhance the ability of the transmission system to protect against overload risks when wind power is integrated into the power system. The model involves: (i) defining the uncertainties associated with wind power generators with probability measures and calculating the probabilistic power flow with the combined use of cumulants and Gram-Charlier series; (ii) developing three risk-control strategies by specifying the smallest acceptable non-overload probability for each branch and the whole system, and specifying the non-overload margin for all branches in the whole system; (iii) formulating an overload risk index based on the non-overload probability and the non-overload margin defined; and (iv) developing a multi-objective transmission system expansion planning (TSEP) model with the objective functions composed of transmission investment and the overload risk index. The presented work represents a superior risk-control model for TSEP in terms of security, reliability and economy. The transmission expansion planning model with the three risk-control strategies demonstrates its feasibility in the case study using two typical power systems
Resumo:
Waste is intrinsic to the fashion system. Fashion is predicated on built-in obsolescence, and as such outmoded garments are rapidly discarded to charity shops or landfill. However, the story of fashion is also one of abundance and extravagance in design ideas. Every season there are new design details – prints, embroidery, embellishments, shapes and textures. This excess of ideas is in itself another form of waste, albeit one that is culturally nourishing. The grave of a fashion garment may also be the grave of a season’s research and creativity. This paper compares the tangible waste of the industry with its intangible waste, namely fashion’s creativity and cultural excess. Fashion’s excess and abundance of trends and ideas makes any move to curb the environmental impact difficult. For all practitioners of fashion – whether designers or consumers – the waste and excess inherent in the fashion system is a difficult ethical terrain to negotiate. However, inverting the wasteful phases of the production cycle can help reframe waste from pollution to a source of nourishment for future practice. While creative excesses of designers may be ‘wasted’ after a season, fashion styles and tropes are recycled and reinvented, with the once passé styles and design ideas from previous years revalorized and returned into the fashion system. Similarly, material garments acquire new value through entering or re-entering the second hand or vintage markets. Design processes can utilise pre or post-consumer textile waste, or eliminate waste through design. In these processes, waste becomes the primary source of nourishment for future fashion cycles.