932 resultados para Nutrient partitioning
Resumo:
Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.
Resumo:
Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.
Resumo:
Despite its enormous extent and importance for global climate, the South Pacific has been poorly investigated in comparison to other regions with respect to chemical oceanography. Here we present the first detailed analysis of dissolved radiogenic Nd isotopes (epsilon-Nd) and rare earth elements (REEs) in intermediate and deep waters of the mid-latitude (~40°S) South Pacific along a meridional transect between South America and New Zealand. The goal of our study is to gain better insight into the distribution and mixing of water masses in the South Pacific and to evaluate the validity of Nd isotopes as a water mass tracer in this remote region of the ocean. The results demonstrate that biogeochemical cycling (scavenging processes in the Eastern Equatorial Pacific) and release of LREEs from the sediment clearly influence the distribution of the dissolved REE concentrations at certain locations. Nevertheless, the Nd isotope signatures clearly trace water masses including AAIW (Antarctic Intermediate Water) (average epsilon-Nd = -8.2 ± 0.3), LCDW (Lower Circumpolar Deep Water) (average epsilon-Nd = -8.3 ± 0.3), NPDW (North Pacific Deep Water) (average epsilon-Nd = -5.9 ± 0.3), and the remnants of NADW (North Atlantic Deep Water) (average epsilon-Nd = -9.7 ± 0.3). Filtered water samples taken from the sediment-water interface under the deep western boundary current off New Zealand suggest that boundary exchange processes are limited at this location and highlight the spatial and temporal variability of this process. These data will serve as a basis for the paleoceanographic application of Nd isotopes in the South Pacific.