923 resultados para Numeral 7 Art 190 Código de Comercio


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ~100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 190 several turbidite successions in the Nankai Trough were drilled through including Pleistocene trench fill (Sites 1173 and 1174), Pleistocene-Pliocene slope basin deposits and underlying trench fill (Sites 1175 and 1176), Miocene Shikoku Basin deposits (Site 1177), and upper Miocene trench fill (Site 1178). Sands from the Pleistocene trench-fill succession of the Nankai Trough are of mixed derivation with significant monomineralic components (quartz and feldspar) and mafic to intermediate volcanic rock fragments, in addition to sedimentary and less abundant metamorphic detritus. They have a source in the Izu collision zone in central Honshu. Sands from the slope and accreted trench fill at Sites 1175 and 1176 are dominated by quartz with less abundant feldspar, sedimentary rock fragments, and only minor volcanic and metamorphic rock fragments. In contrast to the trench turbidites of Sites 1173 and 1174, these sands are very quartzose with characteristic radiolarian chert fragments. Volcanic rock fragments are mainly of silicic composition. Potential sources of these sands are uplifted subduction complexes of southwest Japan. Sands from the accreted trench turbidites at Site 1178 have clast types similar to those at Sites 1175 and 1176. In contrast, however, framework detrital modes are distinctive, with Site 1178 sands having substantially lower total quartz contents and more abundant fine-grained sedimentary rock fragments. These sands were also probably derived from the island of Shikoku, but their composition indicates that sedimentary rocks were abundant in the source area and these may have been Miocene forearc basin successions that were largely removed by erosion. Erosional remnants of Miocene forearc basin deposits are present on the Kii Peninsula east-northeast of Shikoku. Erosion followed a phase of exhumation of the Shimanto Belt indicated by apatite fission track ages at ~10 Ma. Sand in the lower-upper Miocene turbidites of the lower Shikoku Basin section at Site 1177 is more varied in composition, with the upper part of the unit similar to Site 1178 (i.e., rich in sedimentary rock fragments) and the lower part similar to those at Sites 1175 and 1176 (i.e., rich in quartz with some silicic volcanic rock fragments). Sands from the lower part of the Miocene turbidite unit were derived from a continental source with plutonic and volcanic rocks, possibly the inner zone of southwest Japan.