999 resultados para Nuclear excitation
Resumo:
The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The taxonomic importance of uninucleate vs. multinucleate vegetative cells in the Ceramiaceae is emphasized. It has been possible to make visible nuclei in old material, including type specimens, using aceto-carmine and aceto-iron-haematoxylin stains. The holotypes of Ceramium roseum and Callithamnion fasciculatum (currently known as Callithamnion roseum and Pleonosporium borreri var. fasciculatum) have uninucleate cells and belong to Aglaothamnion. In contrast, the holotype of Callithamnion decompositum, a name that has been applied to collections of at least two uninucleate taxa, has multinucleate cells; its morphological and cytological details agree with those of specimens collected in France and Ireland that were previously thought to represent an undescribed species. Female reproductive morphology (described from a thallus with gametangia in addition to tetrasporangia), in conjunction with habit and vegetative features, indicates that this species belongs to Compsothamnion (Compsothamnieae), as a third species, being distinguished from C. thuyoides and C. gracillimum by its sessile, lateral tetrasporangia. The required new combinations under Aglaothamnion and Compsothamnion are made.
Resumo:
Resonant transfer and excitation (RTE) is investigated for Fe(q+) ions (q=23, 24, and 25) colliding with H2. For each charge state, cross sections for RTE were obtained from measurements of K x rays, emitted from the doubly excited intermediate state, coincident with single-electron capture by the incident ion. Additionally, for Fe25+ cross sections were obtained from measurements of coincidences between the two K x rays emitted from the intermediate state. These latter measurements Provide information on the lifetimes of intermediate metastable states formed in the RTE process. In all cases, measured cross sections are in good agreement with calculations based on theoretical cross sections for dielectronic recombination (DR). Since RTE closely approximates DR, the results indicate that dielectronic-recombination cross sections involving K-shell excitation can be accurately predicted for highly charged iron ions. The results for Fe25+ show that metastable states are sufficiently short lived to be observable in the RTE (or DR) process for these hydrogenlike ions.