936 resultados para Nuñez de Acosta, Duarte.
Resumo:
The authors report on the production of Artemia obtained on a 0.5 ha pilot project with combined trials in Artemia rearing with solar salt production during the dry seasons and with production of milkfish (Chanos chanos) fingerlings and/or prawn (Penaeid sp.) juveniles during the rainy season in the Philippines.
Resumo:
The phases of the outsourcing process and the actions required are discussed. The most difficult and the most important phase of o a successful outsourcing process is to know what activities to outsource. The criteria for suppliers selection must be developed and should cover the reasons why the activity is being outsourced, the expected benefits and potential dangers. Contract negotiation is a very important phase of the outsourcing contract in which rules of the outsourcing are set. The transfer of activity phase corresponds to the reassignment of control of the outsourced activity from the outsourcer to the contractor.
Resumo:
The different types of outsourcing and the management requirements for each of them are discussed. An outsourcing has a high strategic importance to the buying company when it is aligned with the organization's long term strategies and when its results are either positive or negative. Functional outsourcings are characterized by both low strategic importance and financial impact, and the products/services that fall in this category belong to support activities which are highly standardized. Leverage outsourcings are those that have a low strategic importance, but high financial impact to the outsourcer, and they concentrate on operational aspects, leaving strategic issues.
Resumo:
The annealing behavior of Si implanted with Ge and then BF2 has been characterized by double crystal X-ray diffraction (DCXRD) and secondary ion mass spectroscopy (SIMS). The results show that annealing at 600 degrees C for 60 minutes can only remove a little damage induced by implantation and nearly no redistribution of Ge and B atoms has occurred during the annealing. The initial crystallinity of Si is fully recovered after annealing at 950 degrees C for 60 minutes and accompanied by Ge diffusion. Very shallow boron junction depth has been formed. When annealing temperature rises to 1050 degrees C, B diffusion enhances, which leads to a deep diffusion and good distribution of B atoms into the Si substrate. The X-ray diffraction (004) rocking curves from the samples annealed at 1050 degrees C for 60 minutes display two SiGe peaks, which may be related to the B concentration profiles.
Resumo:
Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.
Resumo:
The annealing behavior of Si implanted with Ge and then BF2 has been characterized by double crystal X-ray diffraction (DCXRD) and secondary ion mass spectroscopy (SIMS). The results show that annealing at 600 degrees C for 60 minutes can only remove a little damage induced by implantation and nearly no redistribution of Ge and B atoms has occurred during the annealing. The initial crystallinity of Si is fully recovered after annealing at 950 degrees C for 60 minutes and accompanied by Ge diffusion. Very shallow boron junction depth has been formed. When annealing temperature rises to 1050 degrees C, B diffusion enhances, which leads to a deep diffusion and good distribution of B atoms into the Si substrate. The X-ray diffraction (004) rocking curves from the samples annealed at 1050 degrees C for 60 minutes display two SiGe peaks, which may be related to the B concentration profiles.
Resumo:
Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.
Resumo:
The vertical growth of seagrasses in response to burial by migration of bedforms is combined with dating techniques to provide precise and rapid estimates of the migration speed of subaqueous dunes over seagrass patches. Two methods to estimate the time interval between the passage of successive dunes and the motion of single dunes through seagrass patches are described. The second method is more precise. The application of these methods to vegetated (Cymodocea nodosa) subaqueous dunes in the Alfacs Bay (NW Mediterranean) showed that the dunes traveled at an average speed of $13.0 \pm 0.6 m yr^-1$ and demonstrated that the methods can resolve migration speeds from 0.15 to $980 m yr^-1$ with this particular seagrass species. In areas vegetated with different seagrass species, bedform migration can be estimated over different time scales. The strong coupling between seagrass and sediment dynamics resembles the coupling of vegetation and land dunes.
Resumo:
Seagrasses, marine flowering plants, have a long evolutionary history but are now challenged with rapid environmental changes as a result of coastal human population pressures. Seagrasses provide key ecological services, including organic carbon production and export, nutrient cycling, sediment stabilization, enhanced biodiversity, and trophic transfers to adjacent habitats in tropical and temperate regions. They also serve as “coastal canaries,” global biological sentinels of increasing anthropogenic influences in coastal ecosystems, with large-scale losses reported worldwide. Multiple stressors, including sediment and nutrient runoff, physical disturbance, invasive species, disease, commercial fishing practices, aquaculture, overgrazing, algal blooms, and global warming, cause seagrass declines at scales of square meters to hundreds of square kilometers. Reported seagrass losses have led to increased awareness of the need for seagrass protection, monitoring, management, and restoration. However, seagrass science, which has rapidly grown, is disconnected from public awareness of seagrasses, which has lagged behind awareness of other coastal ecosystems. There is a critical need for a targeted global conservation effort that includes a reduction of watershed nutrient and sediment inputs to seagrass habitats and a targeted educational program informing regulators and the public of the value of seagrass meadows.
Resumo:
The coupling between patch dynamics - described by the patch growth (horizontal and vertical), patch mortality, and life-history of Cymodocea nodosa (Ucria) Aschers., and the disturbance caused by the migration of subaqueous dunes over the plants was examined in a shallow NW Mediterranean bay (Alfacs Bay) where this species maintains a patchy cover. C. nodosa shoots survived substantial burial rates (up to 2.4 mm/day) by growing vertically at rates proportional to, albeit four-fold slower than, burial rates. Patch death was caused by erosion as large subaqueous dunes migrated pass the plant patch. Patch growth was fastest over the progressing slope of the dunes ( similar to 2.5 m year super(-1)) and flowering was also stimulated by sand accretion. The time interval between the passage of consecutive dunes, which sets the time window available for patch development, ranged between 2 and 6 years. This time interval allowed C. nodosa to recolonize bare substrata, with patch formation occurring about half a year after the disturbance, and also allowed established shoots to complete their life-cycle and produce seeds and thus enable subsequent recolonization. The time windows available for patch development also set an upper limit to patch size of about 26 m. Significant cross correlations between dune topography and patch dynamics and plant flowering frequency provide evidence that the spatial heterogeneity in the vegetation is closely associated with the disturbance imposed by the migration of sand dunes. The migration of subaqueous dunes maintains C. nodosa in a continuous state of colonization involving spatially asynchronous patch growth and subsequent mortality, which is ultimately responsible for the characteristic patchy landscape of this Bay.
Resumo:
The vertical growth of shoots of the seagrass Thalassia testudinum Banks ex Konig in four meadows, along a range of exposure to waves, in the Mexican Caribbean was examined to elucidate its magnitude and its relationship to sediment dynamics. Average internodal length varied between 0.17 and 12.75 mm, and was greatest in the meadow which experienced the greatest burial by sand waves moved by Hurricane Gilbert (September 1988). Internodal length showed annual cycles, confirmed by the flower scars always preceding or coinciding with the annual minimum internodal length. These annual cycles on the shoot allowed estimation of annual leaf production, which varied, on average, between 14.2 and 19.3 leaves per shoot year-1. High vertical shoot growth was associated with long internodes and high leaf production rate, which increased with increasing vertical shoot growth to a maximum of approximately 25 leaves per shoot year-1, with vertical growth of about 30 mm year-1 or more. Average internodal length showed substantial interannual differences from perturbations derived from the passage of Hurricane Gilbert. The growth response of the plants surviving moderate burial and erosion after the hurricane involved enhanced vertical growth and increased leaf production, and reduced vertical growth, respectively, after 1988. The variability in shoot vertical growth of T testudinum can be separated into seasonal changes in plant growth, and long-term variability associated with episodic perturbations involving sediment redistribution by hurricanes.
Resumo:
Áreas prioritárias de pesquisa com alfafa ; Melhoramento vegetal ; Produção de sementes ; Pastejo em alfafa ; Irrigação ; Controle de plantas daninhas ; Rotação de culturas ; Nutrição e adubação ; Pragas e doenças ; Avaliação econômica ; Priorização de linhas de pesquisa em alfafa.
Resumo:
A micropropagação vem sendo empregada amplamente na multiplicação acelerada de muitas variedades e espécies vegetais. No entanto, apesar de sua enorme aplicação, a micropropagação também enfrenta alguns problemas, sendo um dos mais cruciais a baixa taxa de sobrevivência das plantas durante a aclimatização, ou seja, na transferência das plantas da condição in vitro para um substrato, em casa de vegetação ou estufa, ou diretamente para o campo.Com o objetivo de aumentar a sobrevivência das plantas nessa etapa, desde o início da década de 90 vem sendo empregado um sistema para a aclimatização de material micropropagado de mandioca na Embrapa Mandioca e Fruticultura Tropical. O procedimento é bastante simples, eficiente e barato, e já foi aplicado com sucesso a diversas outras espécies, a exemplo de banana, citros, mamão, melancia, melão, pepino e tomate.