912 resultados para Nonlinear Schrödinger Equation
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]
Resumo:
For highly compressible normally consolidated saturated soil the compression index, Cc, is not constant over the entire pressure range. However, the ratio of the compression index and the initial specific volume, generally known as the compression ratio, appears to be constant. Thus settlement seems to depend on Cc/(1 + e) rather than Cc alone. Using the theoretical zero air voids line and the generalized compressibility equation for normally consolidated saturated soils, a generalized and simple equation for compression has been derived in the form: C'c = 0.003wL.
Resumo:
Nonlinear conduction in a single crystal of charge-ordered Pr0.63Ca0.37MnO3 has bren investigated in an applied magnetic field. In zero field, the nonlinear conduction, which starts at T< T-CO, can give rise to a region of negative differential resistance (NDR) which shows up below the Neel temperature. Application of a magnetic field Inhibits the appearance of NDR and makes the nonlinear conduction strongly hysteritic on cycling of the bias current. This is most severe in the temperature range where the charge-ordered state melts in an applied magnetic field. Our experiment strongly suggests that application of a magnetic field in the charge-ordering regime causes a coexistence of two phases.
Resumo:
The problem of controlling the vibration pattern of a driven string is considered. The basic question dealt with here is to find the control forces which reduce the energy of vibration of a driven string over a prescribed portion of its length while maintaining the energy outside that length above a desired value. The criterion of keeping the response outside the region of energy reduction as close to the original response as possible is introduced as an additional constraint. The slack unconstrained minimization technique (SLUMT) has been successfully applied to solve the above problem. The effect of varying the phase of the control forces (which results in a six-variable control problem) is then studied. The nonlinear programming techniques which have been effectively used to handle problems involving many variables and constraints therefore offer a powerful tool for the solution of vibration control problems.
Resumo:
The dynamics of low-density flows is governed by the Boltzmann equation of the kinetic theory of gases. This is a nonlinear integro-differential equation and, in general, numerical methods must be used to obtain its solution. The present paper, after a brief review of Direct Simulation Monte Carlo (DSMC) methods due to Bird, and Belotserkovskii and Yanitskii, studies the details of theDSMC method of Deshpande for mono as well as multicomponent gases. The present method is a statistical particle-in-cell method and is based upon the Kac-Prigogine master equation which reduces to the Boltzmann equation under the hypothesis of molecular chaos. The proposed Markoff model simulating the collisions uses a Poisson distribution for the number of collisions allowed in cells into which the physical space is divided. The model is then extended to a binary mixture of gases and it is shown that it is necessary to perform the collisions in a certain sequence to obtain unbiased simulation.
Resumo:
A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
C28H48N2Oa.H2 O, Mr=494.7, orthorhombic,P2~2~2~, a = 7.634 (2), b = 11.370 (2), c=34. 167 (4) A, V = 2966 (2) A 3, Z = 4, D m = 1.095,D x -- 1. 108 g cm -3, Mo Kct, 2 -- 0.7107 ,/k, ~ =0.43 cm -~, F(000) = 1088.0, T= 293 K, R = 0.061 for 1578 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is negligible (1/100th of the urea standard). The observed low second-order nonlinear response has been attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
The aim of this dissertation is to model economic variables by a mixture autoregressive (MAR) model. The MAR model is a generalization of linear autoregressive (AR) model. The MAR -model consists of K linear autoregressive components. At any given point of time one of these autoregressive components is randomly selected to generate a new observation for the time series. The mixture probability can be constant over time or a direct function of a some observable variable. Many economic time series contain properties which cannot be described by linear and stationary time series models. A nonlinear autoregressive model such as MAR model can a plausible alternative in the case of these time series. In this dissertation the MAR model is used to model stock market bubbles and a relationship between inflation and the interest rate. In the case of the inflation rate we arrived at the MAR model where inflation process is less mean reverting in the case of high inflation than in the case of normal inflation. The interest rate move one-for-one with expected inflation. We use the data from the Livingston survey as a proxy for inflation expectations. We have found that survey inflation expectations are not perfectly rational. According to our results information stickiness play an important role in the expectation formation. We also found that survey participants have a tendency to underestimate inflation. A MAR model has also used to model stock market bubbles and crashes. This model has two regimes: the bubble regime and the error correction regime. In the error correction regime price depends on a fundamental factor, the price-dividend ratio, and in the bubble regime, price is independent of fundamentals. In this model a stock market crash is usually caused by a regime switch from a bubble regime to an error-correction regime. According to our empirical results bubbles are related to a low inflation. Our model also imply that bubbles have influences investment return distribution in both short and long run.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.