982 resultados para Nitrate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文对沈阳市郊大民屯镇不同年限蔬菜温室土壤化学性质进行研究与分析。得到主要结论如下: 蔬菜温室0~20 cm表层土壤有机质、全氮、速效磷、速效钾、铵态氮、硝态氮均处于较高的养分水平,并且随温室使用年限的延长,呈增加的趋势。土壤有酸化的趋势,土壤电导率呈升高态势。土壤有效态Fe、Mn、Cu、Zn含量分别为8.57~60.30 mg kg-1、2.69~22.43 mg kg-1、0.64~7.52 mg kg-1和0.56~9.29 mg kg-1,变异系数为50%左右;随着温室使用年限的增加,土壤有效态Fe、Mn、Cu、Zn含量总体上呈增加的趋势。土壤Ni、Cd的有效含量随种植年限的延长趋于增加,有效Pb呈现出下降的趋势,土壤重金属Cr的有效态含量与种植年限之间没有明显的相关性。 不同年限蔬菜温室土壤剖面有机质、全氮、速效磷及速效钾含量高于相邻的露地菜田土壤,并随种植年限的延长而增加,随土层深度的增加而下降。温室土壤中铵态氮的含量随温室种植年限的变化相对较小,在土壤剖面不同层次中变化也没有明显的规律性。与露地菜田土壤相比,温室土壤中有效态铁、锰含量下降,有效态铜、锌、铅、镍含量增加。0~30 cm土层土壤交换性Ca呈下降的趋势,交换性Mg呈上升的趋势,土壤Ca/Mg比值呈下降的趋势。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本实验表明:外生菌根真菌彩色豆马勃、劣味乳菇、丝膜菌对PH的适应范围较广,最适生长BH呈酸性。模拟酸雨对马尾松幼苗菌根的外部形态和内部结构有明显影响。在温室栽培中,模拟酸雨(PH2.0)显著抑制菌根侵染率,在田间实验中,对菌根侵染率有一定的影响。菌根PH和土壤PH值随模拟酸雨PH下降而逐渐降低,接种菌根菌可略提高菌根PH和土壤PH值。菌根真菌过氧化氢酶对培养基中PH的变化不敏感,模拟酸雨对菌根过氧化氢酶活性影响也不明显。但沙培中,模拟酸雨(PH2.0)显著抑制菌根过氧化氢酶活性。模拟酸雨(PH2.0)显著刺激菌根过氧化物酶活性,接种菌根菌可以降低菌根过氧化物酶活性。不同PH的培养基对菌体硝酸还原酶活性有明显影响,而且菌体生长速度与硝酸还原酶活性呈正相关。模拟酸雨(PH2.0)显著抑制菌根硝酸还原酶活性,而接种菌根菌明显提高根系硝酸还原酶活性。菌体酸性磷酸酶活性对培养基中PH变化不敏感,同样菌根酸性磷酸酶活性对模拟酸雨的影响也不明显,但是接种菌根菌可明显提高根系酸性磷酸酶活性。模拟酸雨对马尾松幼苗茎的高生长影响不显著。但是对幼苗茎、根系的干重和侧根总长度有显著抑制作用。轻度酸雨(PH4.5-3.0)对马尾松幼苗生长有促进作用,接种菌可提高幼苗生长。从菌根形态结构和生理活性上看,接种菌根菌可减轻模拟酸雨对马尾松幼苗根系的危害,增强对模拟酸雨的抗性。4dThe result of experiment showed that ectomycorrhizal fungi Pisolithus tinctorins. Lactarius insulsus. Cortinarius russus can be growth in broad PH rang in pure culture, the optimum growth PH is acidity. The external morphology and internal structure of ectomycorrhiza of P. massoniana are affected with simulated acid rain. In greenhouse, simulated acid rain (PH2.0) treatment caused significant decrease in the percent infection, but it's not marked in field. The PH of mycorrhizal and soil are reduced with reducing rainfall PH. These PH are slight higher for inoculation with ectomycorrhizal fungi. Catalase activity of ectomycorrhizal fungus is not sensitive to medium with different PH. Mycorrhiza catalase activiyt is not affected significantly with simulated acid rain, but it's inhibited significantly with simulated acid rain (PH2.0) in the sand culture. Peroxidase atcivity of mycorrhiza is enhanced significantly with simulated acid rain (PH2.0), but it's universally lower for inoculation with ectomycorrhizal fungus. Ectomycorrhizal fungus nitrate reductase activity is affected significantly to medium with differdnt PH, the rates of these fungi growth and nitrate reductase activity is significant correlation. Nitrate reductase activity of mycorrhiza is inhibited significantly with simulated acid rain (PH 2.0), but it's increased significantly for inocnlation with mycorrhizal fungi. Ectomycorrhizal fungas acid phosphatase activity is not affected to medium with different PH, Mycorrhiza acid phosphatase activity is not affected with simulated acid rain too, the acid phosphatase activity of roots inoculated with mycorrhizal fungas is increased significantly. The highest acidity level simulated rain reduced signhficantly root system biomass and the dry weight of stem. Iower acidity level simulated rain can stimulated the growth of P. massoniana, the growth of seedling inocnlated with mycorrhizal fungus can be increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来,随着对作物重茬障碍原因的深入研究,植物的化感作用越来越受到国内外众多学者的重视。花椒(Zanthoxy piperitum.)为芸香科植物,是一种收益早、用途广、价值高的经济树种,是川西干旱河谷地区的重要经济作物,其连作障碍也倍受关注,系统研究花椒化感作用将有助于理解和最终解决花椒连作障碍问题。本文首先通过萃取、层析等方法分离花椒主效化感成分;通过外加不同浓度的花椒叶水浸液研究了对土壤氮素养分循环的影响;研究了花椒叶水浸液对苜蓿生理生化、光合作用、氮素养分吸收的影响,并对外施氮肥对这种化感影响的缓解作用做了研究;研究了花椒化感潜力对全球变化——UV-B增强辐射的响应。主要研究结果如下: 1.用不同极性的有机溶剂对花椒叶水浸液浓缩浸膏萃取、柱层析,结合生物活性检测,分离得到主效化感作用组分的一种化感物质——对甲氧基苯酚。采用该物质纯品进行生物活性检测,证明其具有化感作用。 2.花椒叶水浸液处理土壤30天后,土壤硝态氮、铵态氮、无机氮(硝态氮+铵态氮)与对照相比,随着花椒叶水浸液浓度的增加呈现降低的趋势,其中土壤铵态氮含量显著降低,而硝态氮含量的变化则不显著,无机氮含量也显著降低。土壤脲酶和蛋白酶的活性与无机氮含量的变化趋势相同。随着花椒叶水浸液浓度的增加,氨化细菌数量显著降低,固氮菌的数量变化不显著,硝化细菌和反硝化细菌数量有减少的趋势。60天后,硝态氮含量、铵态氮含量、无机氮随水浸液浓度增加的变化趋势与30天时相似;随着花椒叶水浸液浓度的增加,氨化细菌、固氮菌的数量显著减少,硝化细菌数量、反硝化细菌数量仍呈减少趋势;土壤脲酶、蛋白酶活性与第30天的变化趋势相同。第60天与第30天的结果相比,相同水浸液浓度处理的硝态氮、铵态氮、无机氮均有下降的趋势,但除了25g.L-1水浸液处理的外,其它相同浓度的处理间差异均不显著;除了12.5 g.L的处理外土壤脲酶活性均呈增强的趋势;蛋白酶活性都有不同程度的增加;花椒叶水浸液处理的土壤硝化细菌和反硝化细菌数量呈增加趋势。 3.随着花椒叶水浸液浓度的增加,显著抑制了苜蓿根长、地上地下生物量、叶绿素含量、叶片中可溶性蛋白的含量,净光合速率。苜蓿体内四种抗氧化酶(POD、SOD、CAT、APX) 活性随着水浸液浓度的增加而降低,而丙二醛含量则增加。苜蓿氮初级同化相关酶硝酸还原酶(NR)、谷氨酰合成酶(GS)、谷氨酸脱氢酶(GDH)的活性随着水浸液浓度的增加受到不同程度的影响。总的来说,苜蓿硝酸还原酶、谷氨酰合成酶的活性受到抑制,而谷氨酸脱氢酶活性的变化则比较复杂,根呈先降低后增加的趋势,叶片则无显著变化。外施两种不同浓度的硝酸铵氮肥后,对12.5、25 g.L-1花椒叶水浸液处理的苜蓿化感作用有显著的缓解作用,表现在株高、生物量、光合作用等方面,大多达到与对照(0 g.L-1)未施氮肥无显著差异的水平,而对50 g.L-1水浸液处理的苜蓿幼苗,虽有一定的缓解作用,但这种作用均未达到与对照(0 g.L-1)未施氮肥时无显著差异的水平。 4. UV-B增强辐射处理花椒后,花椒的化感潜力显著增强。花椒叶片内UV-B吸收物质的含量和总酚含量均显著增加。 In recent years, with profound research on the reasons of continuous cropping obstacles, allelopathy received increasing attention to many scholars at home and abroad. Zanthoxy bungeanum as a Rutaceae plant is a high economic value species which gains early and uses widely. Zanthoxylum is an important economic crop in the arid valley of western Sichuan region, and its not even has received much concern for the continuous cropping obstacles. The systematic study of allelopathy of Zanthoxylum will contribute to the understanding and final settlement of this issue. The major allelopathic composition was separated through the extraction, chromatography combined with other methods. The impact on soil nutrient cycling was also studied through the addition of different concentrations of water extracts of Zanthoxylum. Furthermore, the effects of water extracts of Zanthoxylum leaves on alfalfa leaf physiological and biochemical indexes, photosynthesis, soil enzymes and nutrient uptake of nitrogen and the mitigation of allelopathy through using external fertilizer were studied to put forward scientific resolvent for Zanthoxylum continuous cropping obstacles .The response of allelopathic potential of Zanthoxylum to global change - UV-B enhanced radiation was studied . The main findings are as follows: 1. Through extraction with different polar organic solvents on concentrated water extract of Zanthoxylum leaf and then using column chromatography combined with detection of biological activity, one of the main allelopathic components- methoxy-phenol was isolated. The biological activity testing of the pure material of methoxy-phenol proved that it does have allelopathic potential. 2. Thirty days after treating soil with water extract of Zanthoxylum leaf, as compared with the control, the contents of soil nitrate, ammonium, nitrate plus ammonium nitrogen showed a trend of decrease with the increase of the concentration of water extract whereas the content of ammonium nitrogen showed a significant reduction, and the content of nitrate did not change significantly, the content of nitrate plus ammonium nitrogen also showed a significant (P <0.05) redction. The activity of soil urease and protease showed the same trend as the content of nitrate nitrogen plus ammonium nitrogen. With the increase in the concentration of water extract, the number of ammonification bacteria significantly reduced but nitrogen-fixing bacteria did not change significantly and there was a decreasing trend in the number of nitrifying bacteria and denitrifying bacteria. Sixty days after the treatment, with the increase in solution concentration of water extract of Zanthoxylum leaf, the content of nitrate、 ammonium nitrogen, nitrate plus ammonium nitrogen showed a similar change trend to 30 days’; the number of ammonification bacteria, nitrogen-fixing bacteria significantly reduced ; the number of nitrifying bacteria, denitrifying bacteria was still an downward trend; the activity of soil urease and protease showed the same trend as the 30th days’. Compared to the results of the 30th days’, the content of nitrate, ammonium, nitrate plus ammonium nitrogen showed a decrease trend between the treatment of same concentration, but there was no significant difference except the treatment of 25g.L-1 between the same concentration; the activity of soil urease showed enhanced trend except the treatment of 12.5 g.L-1; the activity of protease increased to varying degrees; the number of ammonification bacteria、 nitrifying bacteria and denitrifying bacteria were growing while nitrogen-fixing bacteria reduced.. 3. With the increase of the concentration of water extract of Zanthoxylum leaf, the water extract significantly inhibited the root length, aboveground biomass, content of chlorophyll and soluble protein in leaf and net photosynthetic rate. The activity of four antioxidant enzymes (POD, SOD, CAT, APX) reduced with the increase in concentration of the water extract but the content of MDA increased. The activity of enzymes related to primary nitrogen assimilation such nitrate reductase (NR), glutamyl synthetase (GS), glutamate dehydrogenase (GDH) were subject to different degrees with an increase in the concentration of water extracts. In general, the activity of nitrate reductase, glutamyl synthetase were inhibited, while change in the activity of glutamate dehydrogenase was more complex. The activity of glutamate dehydrogenase in leaf was first reduced and then increase,but did not change significantly in root. After using two external different concentrations of nitrogen fertilizer, there was a significant mitigation in inhibiton in plant height, biomass, photosynthesis, etc. in the treatment of 12.5,25 gL-1 of water extract of Zanthoxylum leaf, and most of these indexes showed no significant difference with the control (0 g.L-1, no external fertilizer was added) .Although there showed a certain degree of ease in the treatment of 50 g.L-1 , there was still a significant difference compared with the control (0 gL-1) in which no external fertilizer was used. 4.The allelopathic potential of Zanthoxylum positively responded to enhanced UV-B significantly. The content of UV-B absorbing compounds and the total phenol also significant increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤线虫是土壤动物的主要功能类群之一,在土壤养分分解和循环中起到重要的作用。本研究通过施用两种形态氮肥,硝态氮(NO-3–N)和铵态氮(NH+4–N),对黄瓜整个生长期内根际土壤线虫的群落组成、结构及其多样性等的影响进行了比较研究。为增进土壤健康,提高土壤质量以及合理施用氮肥提供科学的理论依据。研究结果如下: 1. 氮肥处理后,不同浓度NO-3–N处理提高了根际土壤线虫数量,而NH+4–N处理(202.5 kg N/ hm2)抑制了线虫数量的增加。线虫群落结构相对较稳定,营养类群变化不大。且少量优势科/属会对土壤线虫群落特征起着至关重要的作用。 2. 在整个生长季节内,非寄生线虫的群体动态变化与寄生线虫的群体的动态变化具有相反的变化趋势。其中,NO-3–N处理和NH+4–N处理后植物寄生线虫出现频率的变化趋势相近,都是由高到低;非植物寄生线虫出现频率的变化趋势则都是由低到高。这说明非植物寄生线虫数量增长和空间占位对植物寄生线虫群体有一定的抑制作用。另外,也反映了适量氮肥在一定程度上能够减轻植物寄生线虫对黄瓜的危害。 3. 由多样性指数变化可知,NO-3–N和NH+4–N在低肥(67.5 kg N/hm2)和高肥(202.5 kg N/hm2)处理较中肥(135.0 kg N/hm2)处理,更不利于提高土壤线虫多样性地提高和线虫群落的稳定性。中肥不同形态氮肥处理与对照相比,H´指数在初花期和结果期显著增加了土壤线虫的H´指数,说明施入两种形态的氮肥能够提高线虫生物多样性程度。NH+4–N处理在初花期和结果期显著降低了土壤线虫种类的丰富性。土壤线虫生物多样性变化中,H´和SR指数在一定程度上能够反映施用无机氮肥对土壤线虫的多样性的影响,而J指数和λ指数效果不明显。NO-3–N和NH+4–N处理相比较,NO-3–N处理对黄瓜土壤线虫的多样性指数影响更大,促进了土壤线虫群体的多样化和种类的丰富度,更有利于提高土壤线虫的多样性,增加其稳定性。这些结果表明适量无机氮肥特别是NO-3–N的施用对黄瓜土壤线虫的生物多样性有一定的维护和提高作用。 4. 线虫数量与土壤质量指标的相关分析表明:线虫数量与有关土壤理化生指标,如土壤NO-3–N、NH+4–N、有机质含量等的正相关程度高,与总酚含量等显著负相关;与根际土壤微生物,细菌、真菌、放线菌数量等呈显著正相关。另外,线虫数量与土壤含水量未表现出显著相关关系。 Nematodes play a major role in decomposition and nutrient cycling in soil. Nematode community analyses are useful in assessing soil ecosystem status and function. The effects of two forms of mineral nitrogenous fertilizers (NO-3–N and NH+4–N) on nematode community composition, structure and diversity in rhizosphere of cucumber were investigated during different growing seasons of cucumber. Systematically research of effects of nitrogenous fertilizers could help to obtain better undstanding of a healthy soil and using nitrogenous fertilizers in reason. The main results are as follows: 1. The total numbers of nematode were more abundant in NH+4–N treatments than other teatments. However, NH+4–N teatment(202.5 kg N/hm2)dramatically inhibited it. All the tropic groups in the soil nematode communities were stable, and the dominant family or genus had an important function in the nematode community structure. 2. There was similar trend of the frequency of plant parasitic nematodes between NO-3–N and NH+4–N treatment, the similar trend of the frequency of non-plant parasitic nematodes was also found. But the frequency of plant parasitic nematodes exhibited a contrary trend to that of plant parasitic nematodes after different nitrogenous fertilizer treatments. The results showed that the increasing trend of the frequency and the niche of non-plant parasitic nematodes inhibited the plant parasitic nematodes, and indicated that right chemical fertilizers dosage could abate plant parasitic nematodes harm to cucumber. 3. The changes of the biodiversity index showed that the nitrogen treatment(135.0 kg N/hm2)promoted the stabilization of soil nematode diversity than other nitrogen treatments(67.5 kg N/hm2 and 202.5 kg N/hm2). In the treatment(135.0 kg N/hm2),The changes in nematode diversity between the control plots and treated plots were compared by the biodiversity index (H´, J, SR, λ). Among these tested index, H´ and SR were effective in reflecting the effects of different nitrogenous fertilizers on the diversity of soil nematodes. In comparison with the NH+4–N treatment, the NO-3–N treatment promoted the stabilization of soil nematode diversity. 4. Correlation coefficients between nematode abundance and soil quality indices indicated that the total numbers of nematode were affected positively by NO-3–N, NH+4–N and the organic matter, and negatively by total phenolic acids; the total num- bers of nematode had positive correlation with bacteria, fungi and actinomycetes nu- mbers. Soil water contents had only a weak negative influence on it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

香豆素类物质是苯丙酸内酯(环酯)类化合物,绝大部分高等植物通过次生代谢途径都能合成。研究表明,香豆素类物质是花椒体内最重要的化感物质,系统研究香豆素类物质的作用机理有助于理解和最终解决花椒连作障碍。本文通过研究香豆素对几种植物种子特别是苜蓿种子萌发、苜蓿幼苗初级氮同化的影响,从生理生化角度揭示香豆素的作用方式,为花椒连作障碍的解决和化感作用机制的深入理解提供依据。主要研究结果如下:1. 研究了香豆素对6 种常见作物种子萌发的影响,并对一组数据采用4个不同的指标进行评价,对生物测定化感作用中存在的问题进行了讨论。结果发现1.0mM的香豆素对采用的6 种作物的种子萌发均表现出一定的化感作用,4 个指标的敏感程度依次为S (发芽速度)>AS(累积发芽速度)>CRG(发芽指数)>GT(最终发芽率)。种子萌发实验是化感作用研究中最重要、应用最广泛的生物测定方法之一,应根据不同的研究目的合理采用指标和实验方法。2. 采用培养皿试纸法进行种子萌发试验,研究了香豆素水溶液在苜蓿种子萌发过程中对其吸水、电导率及抗氧化保护酶活性的影响。结果表明,影响苜蓿种子发芽的香豆素浓度阀值为0.3mM。香豆素在1.0mM 的浓度下降低了苜蓿种子吸水阶段Ⅱ的吸水速度,使其外渗物质增多,电导率增大,并显著抑制了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性,同时种子体内丙二醛(MDA)的含量显著增大。高浓度香豆素破坏了膜的结构、影响了抗氧化保护酶的活性是香豆素降低苜蓿发芽率的原因之一,也可能是影响花椒-苜蓿间作的关键因素之一。3. 不同浓度(0、25 μM、50 μM、0.1 mM、1.0 mM)化感活性物质香豆素对10 日龄苜蓿幼苗初级氮同化的影响的结果表明25 µM~50 µM 的香豆素加快了苜蓿幼苗对硝态氮的吸收。高浓度的香豆素导致苜蓿根系和叶片内可溶性蛋白含量降低、鲜重减小、地下鲜重/地上鲜重(R/S)的比值升高,根系中初级氮同化的关键酶硝酸还原酶(NR)、谷氨酸胺合成酶(GS)、谷氨酸脱氢酶(GDH)的活性降低,叶片中NR、GS 的活性减低、叶绿素含量减少,而GDH 的活性升高。香豆素影响苜蓿幼苗氮代谢和氨同化的关键酶,导致体内养分的缺失是香豆素抑制苜蓿幼苗生长的机理之一。Coumarins are lactones of o-hydroxycinnamic acid, and are allelopathiccompounds that originate in the phenylpropanoid pathway. They are synthesized byalmost all higher plants. According to previous studies, coumarins were mostimportant allelochemicals in Chinese prickly ash. Systematically research of theeffect of coumarin could help to comprehend the continuous cropping impediment.The effects of coumarin on seed germination and primary nitrogen assimilation ofalfalfa were studied. The main results showed that:1. We compared four common germination indices (S, AS, CRG, GT)preciously calculated with the same date. The results showed that, at theconcentration of 1.0 mM, coumarin inhibited seeds germination. Among all indices,the S index was most sensitive, followed by the AS and CRG indices. Andsuggestions on the expression of bioassay results were also provided.2. At concentrations above 0.3 mM, coumarin inhibited seed germination in aconcentration-dependent manner. During seed imbibitionⅡ, coumarin at 1.0 mMsignificantly reduced the activities of superoxide dismutase (SOD), catalase (CAT),peroxidase (POD), while the content of malonyldialdehyde (MDA) in alfalfa seedssignificantly increased. The higher concentration coumarin destroyed structure ofmembrane and influenced activities of antioxidant enzymes, which might be one ofthe reasons that coumarin decreased germination rate of alfalfa, and one of the keyfactors influencing Chinese prickly ash-alfalfa intercropping.3. Alfalfa plants were exposed to different concentration of coumarin (0、25μM、50 μM、0.1 mM、1.0 mM) grown for 10 days on control medium. Coumarin, in the range of 25 μM~50 μM, significantly stimulated the net nitrate uptake.Increasing coumarin concentration led to a decrease of protein contents in theleaves and roots. The root to shoot (R/S) FW ratio was increased by increasingcoumarin concentration. Under high coumarin concentration, the activities of nitratereductase (NR) and glutamine synthetase (GS) were repressed in the roots andleaves. Glutamate dehydrogenase (GDH) was inhibited in the roots, while enhancedin the leaves. Chlorophyll contents in the leaves were also decreased under highcoumain concentration. Coumarin decreased alfalfa growth by (i) nutritionaldeficiencies shown by the decrease of nitrate, (ii) lowered N compound synthesisvia inhibition of nitrate reduction and ammonium assimilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

瑞香狼毒(Stellera chamaejasme L.)是瑞香科(Thymelaeaceae)狼毒属的一种多年生野草,有毒。据调查,从20 世纪60 年代开始至今,狼毒在青藏高原东缘的高寒草甸上不断蔓延、密度不断变大,在一些地段甚至成为优势物种。有关狼毒在高寒草甸蔓延的生态系统效应的研究尚未见报道。本文从系统碳、氮循环的角度,分别研究狼毒在生长和非生长季节对高寒草甸生态系统的影响。同时,从花粉化感的角度,深入研究狼毒对当地同花期物种有性繁殖的影响。系统地研究高寒草甸生态系统物质循环过程,特别是非生长季节微生物和土壤碳氮库的动态变化,有助于揭示狼毒在系统物质循环方面的“物种效应”以及这种效应的季节变化,为丰富有关高海拔生态系统,特别是其非生长季的物质循环的科学理论做出贡献。同时,碳氮循环和花粉化感的研究还有助于深刻地理解狼毒作为一种入侵性很强的杂草的特殊的蔓延机制,从而为狼毒的有效防治、高寒草甸的科学管理提供依据。 针对狼毒在青藏高原高寒草甸上蔓延的生态系统碳氮循环方面的影响,开展以下2 方面的研究:(1)在生长季,研究松潘县尕米寺附近(北纬32°53',东经103°40',海拔3190 m)的两种地形(平地和阳坡)条件下狼毒对土壤碳氮循环影响及可能的原因。狼毒和其它几个主要物种(圆穗蓼(Polygonummacrophyllum D. Don var. Macrophyllum),草地早熟禾(Poa pretensis L.),四川嵩草(Kobresia setchwanensis Hand.-Maizz.),鹅绒委陵菜(Potentilla anserina L.var. anserine)和鳞叶龙胆(Gentiana squarrosa Ledeb.)的地上凋落物产量以及地上凋落物和根的化学组成被测量。在有-无狼毒斑块下,各种土壤的库(比如,铵态氮、硝态氮、无机磷和微生物生物量)和周转率(包括净矿化、净硝化、总硝化、反硝化和微生物呼吸速率)被测量和比较。(2)在非生长季节,尤其是春季冻融交替期,选取了两个研究地点——尕米寺和卡卡沟(北纬32°59',东经103°41',海拔3400 m),分别测定有狼毒和无狼毒斑块下土壤微生物生物量碳和氮、可溶性有机碳和氮以及铵态氮和硝态氮的动态变化。同时,分别在上述两个地点有-无狼毒的样地上,研究6 个主要物种(狼毒、圆穗蓼、草地早熟禾、四川嵩草、鹅绒委陵菜和鳞叶龙胆)从秋季开始、为期1 年的凋落物分解过程。 针对狼毒花粉化感对同花期其它物种可能的花粉化感作用开展以下工作:在实验室中,用一系列浓度的狼毒花粉水浸提液对与它同花期的其它物种以及自身花粉进行测试,测定花粉萌发率;在野外自然条件下的其它物种的柱头上施用上述浓度的狼毒花粉水浸提液,观测种子结实率,同时,观察狼毒花粉的种间花粉散布数量。 生长季节的研究结果表明,狼毒地上凋落物氮含量比其它几个主要物种更高,而木质素-总氮比更低。狼毒显著地增加其斑块下表层土壤中有机质的含量,而有-无狼毒的亚表层土壤在有机碳和总磷方面没有显著差异。狼毒表土中硝态氮含量在平地和阳坡比无狼毒土壤分别高113%和90%。狼毒表土中微生物生物量碳和氮量显著高于无狼毒表土。无论是平地还是阳坡,狼毒土壤的总硝化和微生物呼吸速率显著高于无狼毒土壤;而它们的反硝化速率只在平地有显著的差异。狼毒与其它物种间地上凋落物的产量和质量的差异可能是导致有-无狼毒土壤碳氮循环差异的原因。我们假设,狼毒可能通过增加贫氮生态系统土壤中的有效氮含量提高其入侵能力。 非生长季的研究结果表明,在青藏高原东缘的高寒草甸上,土壤微生物生3物量在11 月的秋-冬过渡期达到第一个峰值;在春季的冻融交替期,微生物生物量达到第二个峰值后又迅速降低。无机氮以及可溶性有机碳氮与微生物生物量有相似的变化过程。微生物碳氮比呈现显著的季节性变化。隆冬季节的微生物生物量碳氮比显著高于生长旺季的微生物碳氮比。这种变化可能暗示冬、夏季微生物的群落组成和对资源的利用有所不同。有-无狼毒斑块下土壤微生物和土壤碳、氮库一般只在秋-冬过渡期有显著差异,有狼毒土壤微生物生物量和土壤碳、氮库显著高于无狼毒土壤;而在之后的冬季和春季没有显著差异。所有6 个物种凋落物在非生长季分解率为24%-50%,均高于生长季的10%到30%。其中在秋-冬过渡期,凋落物开始埋藏的两周时间内,分解最快,达10%-20%。不同物种凋落物全年的分解率和分解过程有显著差异。圆穗蓼在全年的分解都较缓慢(非生长季26%,生长季15%),草地早熟禾和四川嵩草等全年的分解速率比较均匀(非生长季和生长季均为30%,非生长季略高),而狼毒在非生长季分解较快(约50%),而在接下来的生长季分解变得缓慢(约12%)。所有物种的凋落物氮含量在非生长季下降,而在随后的生长季上升。 实验室的花粉萌发试验证明,狼毒花粉对自身花粉萌发没有自毒作用,而其它受试的所有物种(圆穗蓼,秦艽(Gentiana macrophylla Pall. var. fetissowii),湿生扁蕾(Gentianopsis paludosa (Hook. f.) Ma var. paludosa),鳞叶龙胆,椭圆叶花锚(Halenia elliptica D. Don var. elliptica),蓝钟花(Cyananthus hookeri C. B.Cl. var. grandiflorus Marq.),小米草(Euphrasia pectinata Ten.),川西翠雀花(Delphinium tongolense Franch.),高原毛茛(Ranunculus tanguticus (Maxim.)Ovcz. var. tanguticus)和鹅绒委陵菜)的花粉萌发率随着狼毒花粉浸提液浓度的增加呈显著的非线性降低。大约3 个狼毒花粉的浸提液就可以抑制受试的多数物种的50%的花粉萌发。在鳞叶龙胆和小米草柱头上狼毒花粉的数量分别为5.76 个和3.35 个。狼毒花粉散布数量的差异最可能的原因在于是否有共同的传粉昆虫。花的形状(辐射对称VS 左右对称)、植株或花的密度以及花期重叠性可以部分解释这种差异。在野外试验中,我们发现6 个物种(秦艽、湿生扁蕾、鳞叶龙胆、椭圆叶花锚、蓝钟花和小米草)的种子结实率随狼毒花粉浸提液浓度的增加呈显著的非线性降低。鳞叶龙胆和小米草柱头上狼毒花粉的数量(分别是5.76 个和3.35 个)分别达到了抑制它们63%和55%种子结实率的水平。因此,狼毒对鳞叶龙胆和小米草可能存在明显的花粉化感抑制作用。狼毒周围的物种可能通过花期在季节或昼夜上的分异避免受到狼毒花粉化感的影响或者通过无性繁殖来维持种群繁衍,因此狼毒通过花粉化感作用对其周围物种繁殖的影响程度还需要进一步地研究。如果狼毒的花粉化感抑制作用确实存在,那么它可能成为一种自然选择压力,进而影响物种的进化。 Stellera chamaejasme L., a perennial toxic weed, has emerged and quicklydominated and spread in the high-frigid meadow on the eastern Tibetan Plateau ofChina since the 1960s. In the present study, effects of S. chamaejasme on carbon andnitrogen cycles on the high-frigid meadow on the eastern Qinghai-Tibetan Plateau ingrowing and non-growing season, and its pollen allelopathic effects on the sympatricspecies were determined. The present study that focused on carbon and nitrogencycles, especially on microbial biomass and pools of carbon and nitrogen innon-growing season, could profoundly illuminate plant-species effects on carbon andnutrient cycles and its seasonal pattern and help to understand spread mechanism ofS. chamaejasme as an aggressive weed. The present study also contributed to furtherunderstand carbon and nutrient cycles on alpine regions in non-growing season andprovide a basis on weed control of S. chamaejasme and scientific management in thehigh-frigid ecosystem. Effects of S. chamaejasme on carbon and nitrogen cycles on the high-frigidmeadow on the eastern Qinghai-Tibetan Plateau were determined. The study couldbe divided into two parts. (1) In the growing season, we quantified the effects of S.chamaejasme on carbon and nitrogen cycles in two types of topographic habitats, theflat valley and the south-facing slope, where S. chamaejasme was favored to spreadlitter and root were measured to explain the likely effects of S. chamaejasme on soilcarbon and nutrient cycles. The sizes of various soil pools, e.g. nitrite, ammonium,inorganic phosphorus and microbial biomass, and turnover rates including netmineralization, gross nitrification, denitrification and microbial respiration weredetermined. (2) In the non-growing season study, microbial biomass carbon andnitrogen, soluble organic carbon and nitrogen, ammonium and nitrate weredetermined through the non-growing season, especially in the processes offreeze-thaw of spring in two high-frigid sites, i.e. Kaka valley and Gami temple, onthe eastern Qinghai-Tibetan Plateau. Meanwhile, litter decomposition of six commonspecies, including Stellera chamaejasme L., Polygonum macrophyllum D. Don var.Macrophyllum, Poa pretensis L., Kobresia setchwanensis L., Potentilla anserina L.var. anserine and Gentiana squarrosa Ledeb., were also examined under theabove-mentioned experimental design through one whole-year, which began in theautumn in 2006. In the study of pollen allelopathy, several work, including in vitro study oneffects of extract of pollen from S. chamaejasme on sympatric species and pollenfrom itself, field experiments on effects of pollen extract with the same regime ofconcentrations on seed set and field observation on heterospecific pollen transfer ofS. chamaejasme to six of those sympatric species has been done. The results in the growing season showed that aboveground litter of S.chamaejasme had higher tissue nitrogen and lower lignin: nitrogen ratio than thoseco-occurring species. S. chamaejasme significantly increased topsoil organic matter,whereas no significant differences were found for organic C and total P in subsoilbetween under-Stellera and away-Stellera locations. The nitrate in Stellera topsoilwas 113% and 90% higher on the flat valley and on the south-facing slope,respectively. Both microbial biomass C and N were significantly higher in Stelleratopsoil. Gross nitrification and microbial respiration were significantly higher inStellera topsoil both on the flat valley and on the south-facing slope, whereassignificant differences of denitrification were found only on the flat valley. Thedifferences in the quantity and quality of aboveground litter are a likely mechanismresponsible for the changes of soil variables. We assumed that S. chamaejasme couldenhance their spread by increasing nutrient availability in N-deficient ecosystems. The results in the non-growing season showed that microbial biomass achievedthe first summit in late autumn and early winter on the eastern Qinghai-TibetanPlateau. In the stages of freeze-thaw of spring, microbial biomass firstly achieved thesecond summit and subsequently sharply decreased. Inorganic nitrogen, solubleorganic carbon and nitrogen had a similar dynamics with that of microbial biomass.Ratio of microbial biomass carbon and nitrogen had an obviously seasonal pattern.The highest microbial C: N were in the non-growing season, which weresignificantly higher than those in the growing season. The seasonal pattern inmicrobial biomass C: N suggested that large changes in composition of microbialpopulation and in resources those used by microbes between summer and winter.Generally, microbial biomass and pools size of carbon and nitrogen in Stellera soilwere significantly higher than those under adjacent locations in late autumn andearly winter, but there were not significant differences in winter and in spring. Litterof all the focal species (Stellera chamaejasme L., Polygonum macrophyllum D. Donvar. Macrophyllum, Poa pretensis L., Kobresia setchwanensis Hand.-Maizz.,Potentilla anserina L. var. anserine and G. squarrosa Ledeb.) decomposed about24%-50% in the non-growing season, which were higher than those in the growingseason (ranged from 10% to 30%). Litter decomposed 10%-20% within the first twoweeks in late autumn and early winter. Significant differences in the whole-yeardecomposition rate and in the processes of decomposition were found among species.Polygonum macrophyllum decomposed slowly through the whole year (26% and15% in the non-growing season and in the growing season, respectively). Certainspecies, such as P. pretensis L. and K. setchwanensis, decomposed at a similar rate(30% both in the non-growing and in the growing season, slightly higher in the8growing season than those in the growing season), whereas S. chamaejasmedecomposed more rapidly (about 50%) in the non-growing season and subsequentlydecomposition became slow (about 12%) in the growing season. Litter nitrogencontents of all the focal species firstly decreased in the non-growing season and thenincreased in the growing season. In vitro experiments of pollen allelopathy, the results showed that pollen from S.chamaejasme was not autotoxic, whereas pollen germination in all the sympatricspecies (Polygonum macrophyllum D. Don var. Macrophyllum, Gentianamacrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Ma var. paludosa,Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica, Cyananthushookeri C. B. Cl. var. grandiflorus Marq., Euphrasia pectinata Ten., Delphiniumtongolense Franch., Ranunculus tanguticus (Maxim.) Ovcz. var. tanguticus andPotentilla anserina L. var. anserina) decreased nonlinearly as the increasingconcentrations of extract of pollen from S. chamaejasme. Pollen Extract of threepollens from S. chamaejasme generally inhibited 50% pollen germination of most ofthe focal species. 5.76 and 3.35 pollens from S. chamaejasme were observed in fieldon stigmas of G. squarrosa and E. pectinata, respectively. Differences inheterospecific pollen transfer of S. chamaejasme could be attributed to the primaryreason whether they shared common pollinators. Flower morphology (e.g.zygomorphic or actinomorphic), plant or floral density and concurrence in floweringphonologies could explain, in part, the differences in heterospecific pollen transfer.In field experiments, the results showed that seed set in six sympatric species(Gentiana macrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Mavar. paludosa, Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica,Cyananthus hookeri C. B. Cl. var. grandiflorus Marq. and Euphrasia pectinata Ten.)decreased nonlinearly as the increasing concentrations of extract of pollen from S.chamaejasme. According to the nonlinear curves, the amounts of pollens from S.chamaejasme on stigmas of G. squarrosa and of E. pectinata (i.e. 5.76 grains and3.35 grains, respectively) could reduce 63% and 55% seed set of G. squarrosa and ofE. pectinata, respectively. Thus, allelopathic effects of S. chamaejasme on G.squarrosa and E. pectinata could be realistic. The sympatric species of S.chamaejasme could avoid pollen allelopathy of S. chamaejasme to sustainthemselves. This highlights the need to study how much pollen allelopathy in S.chamaejasme influences the sympatric species through divergence in seasonal ordiurnal flowering phonologies or through asexual reproduction. If pollen allelopathyin S. chamaejasme was confirmed, it could be as a pressure of natural selection andthus play an important role in species evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来,随着对作物重茬(连年种植)障碍原因的深入研究,植物的化感作用越来越受到国内外众多学者的重视。而作为重要调料和药用植物的生姜,其连作障碍也备受关注,系统地研究生姜化感作用将有助于理解和最终解决生姜连作障碍问题。本文通过研究生姜不同部位、不同浓度的水浸液对与其间作的两个物种(大豆和四季葱)种子的萌发及幼苗生长的影响,从而证明生姜化感作用的存在;并通过温室盆栽实验研究了生姜的自毒作用(即研究生姜不同部位、不同浓度的水浸液对其幼苗的形态、生理生化、光合作用、土壤酶、土壤微生物多样性及土壤养分的影响),从而揭示生姜退化和衰老的机制,并为生姜筛选出合适的间作物种提供科学依据,对生姜连作障碍提出科学的解决方法。主要研究结果如下: 1. 与对照相比,生姜所有部位(根茎、茎、叶)、所有浓度(10、20、40、 80 g l-1)的水浸液均抑制了大豆种子和葱籽的萌发率、幼苗生长、水分吸收和脂肪酶活性,并且其抑制程度随着水浸液浓度的增加而增强,其生姜各部位水浸液抑制效应的强弱顺序为茎>叶>根茎。这一结果表明生姜根茎、茎、叶含有能够抑制大豆种子和葱籽种子萌发和幼苗生长的水溶性化感物质。根茎是生姜的主要收获部位,而生姜的残株(主要是茎和叶)应该从大田中处理掉以减轻其抑制效应。生姜水浸液中主要化感成分包括:根茎水浸液中主要是丁香酸和伞花内脂;茎水浸液中主要是阿魏酸,且其含量最高为73.4 ug/g;叶水浸液中除了阿魏酸,其他六种物质均检测出来,但含量较高的主要有丁香酸、伞花内脂和香豆酸。 2. 生姜茎和叶不同浓度的水浸液均显著抑制了生姜幼苗的株高、每株叶片数和叶面积,其抑制程度随着水浸液浓度的增加而有所增强,而生姜幼苗每株分枝数差异不显著;同时生姜水浸液也极大程度地影响了生姜幼苗的生物量(包括地下生物量、地上生物量和总生物量,均为鲜重)。在同一浓度下,茎水浸液对生姜幼苗形态指标及生物量指标均显示出最强的抑制作用,叶水浸液次之,根茎水浸液最弱。与对照相比,低浓度的生姜根茎水浸液提高了生姜幼苗叶片内四种抗氧化酶(SOD、POD、CAT、APX)活性,高浓度的根茎水浸液抑制了四种抗氧化酶活性,而茎和叶水浸液均随着浓度的增加而抑制了四种抗氧化酶活性,三种水浸液均随着浓度的增加降低了生姜幼苗叶片内叶绿素的含量,而增加了生姜幼苗叶片的相对电导率和丙二醛含量。同时,三种水浸液均随着浓度的增加降低了生姜幼苗的光合参数(包括胞间CO2浓度、气孔导度、蒸腾速率及净光合速率)。 3. 三种生姜水浸液对所测六种土壤酶活性均产生了不同程度的影响,其中影响最大的是酸性磷酸酶和蔗糖酶,在10 g l-1 时就达到了显著水平,并且所有酶均有随着水浸液浓度增加而增大的趋势;相同部位的水浸液随着浓度的增加,细菌和真菌的数量呈增加趋势,而放线菌的数量呈减少趋势;三种生姜水浸液均随着浓度的增加降低了土壤中有机质的含量,加剧了土壤中硝态氮含量的积累,根茎水浸液对土壤有效磷、速效钾和铵态氮均显示出低浓度提高其含量而高浓度降低其含量的趋势,而茎和叶水浸液则随着浓度的增加均降低了其含量。 4. 与生姜单作相比,所有间作系统均在旺盛生长期和收获期不同程度地提高了土壤酶活性,同时也增加了土壤细菌数量及土壤微生物总数但不显著;所有间作系统在旺盛生长期和收获期均不同程度地影响了土壤真菌及放线菌数量(增加或减少),所有间作系统间的多样性指数差异不显著,除了旺盛生长期四种作物(生姜-大豆-四季葱-大蒜)的间作模式显著降低了多样性指数,其值仅为生姜单作的33.18%;生姜与大豆间作不仅提高了19.6%的生姜产量而且获得了较好的经济效益,并且,所有间作系统均显著抑制了生姜姜瘟病的发生。 5. 不同栽培模式不同程度地影响了收获期生姜的株高、分枝数、根茎产量及内在品质。其中处理2显著地促进了生姜的分枝(10.5%),同时处理2、3和4也促进了生姜的生长(株高分别增加了15.0%、11.4%和14.0%),并且这三个处理提高了生姜的产量;处理2和3能有效提高生姜块茎中维生素C(分别较单作生姜显著提高了3.29%和4.05%)、处理3显著提高了可溶性糖(8.2%)、姜辣素(4.6%)和蛋白质等有益物质的含量,降低硝酸盐有害物质的含量(处理2显著降低了14.0%),改善了姜块的外观和内在品质。并且,生姜与大豆间作具有最高的纯收入和产投比,分别较生姜单作提高了24.80%和8.8%。Recently, allelopathy has been more and more paid attentions by national and foreign scholars with profound research on reasons of crop replanted (continuous planted) obstacle. Ginger rhizome is valuable all over the world either as a spice or herbal medicine and ginger replanted obstacle is also paid attentions. Systematic research on ginger allelopathy will contribute to understanding and ultimate solving problem of ginger replanted obstacle. The effects of ginger aqueous extracts with different parts and concentrations on seed germination and early seedling growth of soybean and chive were studied in this article to testify that ginger existed allelopathy. Furthermore, ginger autotoxicity was also studied by pot experiment in greenhouse (namely research on effects of ginger aqueous extracts with different parts and concentrations on morphological indexes, physiological and biochemical indexes, photosynthesis, soil enzymes, soil microbial diversity and soil nutrients) to reveal mechanism of ginger degeneration and senescence, provide scientific basis for selecting appropriate intercropping species and put forward scientific resolvent for ginger replanted obstacle. The main results were as follows: 1. All aqueous extracts at all concentrations inhibited seed germination, seedling growth, water uptake and lipase activity of soybean and chive compared with the control, and the degree of inhibition increased with the incremental extracts concentration. The degree of toxicity of different ginger plant parts can be classified in order of decreasing inhibition as stem>leaf>rhizome. The results of this study suggested that rhizome, stem and leaf of ginger contained water soluble allelochemicals which could inhibit seed germination and seedling growth of soybean and chive. The rhizome is the main harvested part of ginger. The residue (mainly stems and leaves) of the ginger plant should be removed from the field so as to diminish its inhibitory effect. The main allelopathic components of three kind of aqueous extracts were as follows: Rhizome extract chiefly contained syringic acid and vmbelliferone and stem extract mainly contained frulic acid whose content was the highest (73.4 ug/g). The other six substances were detected except of frulic acid, but only contents of syringic acid, vmbelliferone and p-coumaric acid were higher. 2. Stem and leaf aqueous extracts of ginger with different concentrations significantly inhibited plant height, leaf numbers per plant and leaf area, and the degree of inhibition increased with the incremental extracts concentration. However, tiller number per plant of ginger seedling showed no significant difference. At the same time, ginger aqueous extracts also influenced biomass including under-ground biomass, above-ground biomass and total biomass (fresh weight) to a large extent. Under the same concentration, stem aqueous extract showed the mostly inhibitory effect on morphological indexes and biomass indexes of ginger seedling. Rhizome aqueous extract showed the leastly inhibitory effect and leaf aqueous extract was intervenient. Enhanced concentration of ginger aqueous extracts significantly reduced total chlorophyll content, accompanying with increases in memberane permeability (REL) and lipid peroxidation (MDA). Compared with the control, rhizome ginger aqueous extract of lower concentration (10 g l-1) increased the activities of major antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX) of ginger leaf tissue and higher concentration inhibited the activities of four antioxidant enzymes. However, stem and leaf aqueous extract inhibited the activities of four antioxidant enzymes with increase in concentration. Meanwhile, enhanced concentration of ginger aqueous extracts significantly reduced photo-parameters of ginger seedling (including CO2 concentration, stoma conductivity, net photosynthesis rate and transpiration rate). 3. Rhizome, stem and leaf ginger aqueous extract showed different effect on six soil enzyme activities, and acid phosphatase and invertase showed significant effect when aqueous extract concentration got 10 g l-1. Furthermore, six soil enzyme activities increased with increase in aqueous extract concentration. Bcterial and fungi number tended to increase while antinomyces tented to decrease with the increase in aqueous extract concentration of identical part. Ginger aqueous extracts reduced soil organic matter content with increased concentration, accompanying with NO3-—N accumulation in soil. Rhizome aqueous extract showed the same tendency for available P, available K and NH4+—N, namely lower concentration increased their contents in soil and higher concentration reduced their contents. While stem and leaf aqueous extracts reduced their contents with the increamental concentration. 4. All intercropping systems increased soil enzyme activities to different extent both at VGS and at HS compared to solo ginger. All intercropping systems increased the colony numbers of soil bacteria and total of soil microbe but not significantly either at VGS or at HS. All intercropping systems increased the colony numbers of soil fungi and actinomytes to a different extent (increase or decrease) both at VGS and at HS. For DI, difference between all cultivation patterns and S-G was not significant either at VGS or at HS except that G-S-C-G whose value was only 33.18% of S-G at VGS significantly decreased. G-S not only increased ginger yield by 19.6% but also obtained better economic benefit. Furthermore, all intercropping systems significantly inhibited occurrence of bacterial wilt of ginger. 5. Different cultivated pattern influenced plant height, tiller numbers, rhizome yields and intrinsic quality of ginger. Treatment 2 significantly facilitated tiller occurring (10.5%). Treatment 2, 3 and 4 promoted ginger growth (plant height respectively increased 15.0%、11.4% and 14.0%) and enhanced rhizome yields. Treatment 2 and 3 effectively increased vitamin C content (significantly increased 3.29% and 4.05% compared to solo ginger). Treatment 3 significantly increased contents of beneficial substances such as soluble sugar (8.2%), gingerols (4.6%) and protein. Treatment 2 significantly decreased contents of deleterious substance namely nitrate (14.0%) and improved appearance and intrinsic quality of ginger rhizome. Furthermore, treatment 2 (ginger/soybean intercropping) could obtain better economic benefit and showed the highest net income and ratio of benefit and cost whose values respectively increased by 24.80% and 8.8% compared to solo ginger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

人类活动引起全球大气中温室气体(CO2、CH4、NOx)浓度不断增加,致使地球表面温度在过去的100 年中已经增长了0.74 ± 0.18℃,预计到本世纪末将会增加1.1-6.4℃。此外,氮沉降也是当今社会的重要环境问题,随着经济发展的全球化, 高氮沉降也呈现出全球化趋势。全球气候变暖和氮沉降给陆地生态系统的地上、地下生物学和生物地球化学过程所带来巨大影响越来越引起人们的关注。 本文以川西亚高山针叶林的两个重要树种云杉和油松幼苗为研究对象,采用红外辐射增温(空气增温2.1℃,土壤增温2.6℃)和根部施氮(施氮量25 g N m-2yr-1)的方法,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究这两种幼苗对气候变暖和氮沉降的响应。该实验为室外控制实验,包括四个处理:(1)不增温+不施氮(UU);(2) 不增温+施氮(UF);(3) 增温+不施氮(WU);(4) 增温+施氮(WF)。本研究旨在从生理生化、物质代谢 、生长及形态等不同水平上研究模拟增温和施氮对两种树苗的联合效应,提高我们对全球变化下亚高山针叶林早期更新过程的理解,同时也为森林管理提供科学依据。具体研究结果如下: 单独增温处理显著提高了云杉和油松幼苗的地茎、叶重、茎重、根重以及总生物量;单独施氮处理也增加了两种幼苗的株高和总生物量。而增温和施氮联合作用对两种幼苗生长的影响并不相同,联合作用对云杉幼苗生长指标的正效应显著低于单独施氮处理,但是联合作用比单独增温或施氮更大程度的促进了油松幼苗生物量的积累。 单独增温和施氮都有利于提高云杉和油松叶片中叶绿素含量、净光合速率(A)、最大净光合速率(Amax)、表观量子效率(Φ)、最大光能转化效率(Fv/Fm)和量子产量(Y)。与对两种幼苗生长指标的影响相似,加氮和增温共同作用下油松幼苗的以上光合指标比在单独增温或施氮处理下有更大程度的提高;而联合作用下云杉幼苗叶绿素含量、净光合速率、最大净光合速率、表观量子效率、最大光能转化效率以及量子产量比单独施氮处理明显地降低。 增温和施氮都显著地降低了云杉和油松幼苗针叶组织中活性氧和丙二醛的积累。交互作用降低了云杉幼苗叶片的抗氧化酶活性、脯氨酸和ASA 的含量,却显著提高了油松幼苗SOD、POD、APX 等抗氧化酶的活性,并且对油松幼苗脯氨酸和ASA 积累的促进作用比单一因子更加明显。因此,增温和施氮共同作用下油松幼苗叶片中O2-产生速率、H2O2 及MDA 含量明显降低,而云杉叶片中只有O2-产生速率出现降低趋势。 增温和施氮都降低了云杉体内的P、Ca、Mg 元素的含量,增加了Cu、Zn、Mn 在各器官内的积累。对油松幼苗而言,增温和加氮单独作用也显著降低了Ca 含量增加了Cu、Zn、Mn 的积累,但是不同于云杉幼苗的是P、Mg 也显著增加。增温和施氮联合作用对云杉幼苗体内元素的影响与单一施氮处理或增温处理相似,不同的是比单一因子作用更为明显降低了P、Ca、Mg 含量,增加了植株中N、Cu、Zn、Mn 的含量,但是油松矿质元素含量在联合作用下并没有产生类似于云杉幼苗的双因子叠加效应。 总之,尽管单独增温或者施氮都有利于云杉和油松幼苗生长指标、光合能力以及抗氧化能力的提高。但是,增温和施氮对云杉幼苗生长生理的促进效应非但没有在交互作用下有更大的提高,反而低于单独氮处理。与此不同的是,增温和施氮联合作用比单因子作用更有利于油松幼苗生长及生理指标的提高。 With the continued increase in atmospheric concentrations of greenhouse gases (CO2、CH4、NOx), the mean global surface temperature has increased by about 0.74 ± 0.18℃ over the past century and is predicted to rise by as much as 6.4℃ during this century. Besides global warming, nitrogen deposition is another serious environmental problem caused by human activities, and high nitrogen load has become globalization as a result of global economy development. Global climate warming and nitrogen deposition have induced dramatic alternations in above - and below- ground biology and biogeochemistry process in terrestrial ecosystems, and more and more attention has been invited to those problems. This experiment mainly studies two important species Picea asperata and Pinus tabulaeformis in subalpine coniferous forest of western Sichuan, China. Infared heaters are induced to increase both air and soil temperature by 2.1℃ and 2.6 ℃, respectively. Ammonium nitrate solution (for a total equivalent to 25 g N m-2 year-1) is added to soil surface. There are four treatments in this study: (1) unwarmed unfertilized (UU); (2) unwarmed fertilized (UF); (3) warmed unfertilized (WU); (4) warmed fertilized (WF). This study is conducted to determine the influences of experimental warming and nitrogen fertilization on physiolchemistry, nutrition metabolism, growth and morphology in the two coniferous species seedlings. The current study is favorable for increasing our understanding on the early phase of regeneration behavior in subalpine coniferous forest, and it also provide scientific direction for forest management under future global changes. The results are as follows: Artificial warming alone significantly increased basal diameter, leaf mass, stem mass, root mass and total biomass for Picea asperata and Pinus tabulaeformis seedlings, and single nitrogen fertilization are also favorable for growth of the two species and stimulate plant hight and total biomass. The two species seedlings respond differently to the combination of elevated temperature and nitrogen addition. Warming combined with nitrogen fertilization weakens the positive effects of nitrogen addition for growth of Picea asperata seedlings. However, the combination of elevated temperature and nitrogen fertilization further increase biomass accumulation of Pinus tabulaeformis seedlings. Both elevated temperature alone and nitrogen fertilization alone can increase photosynthetic pigments contents, net photosynthetic rate (A), maximum net photosynthetic rate (Amax), apparent quantity yield (Φ), maximum photochemical efficiency of photosystem II (Fv/Fm) and effective quantum yield (Y). Similarly with growth parameters, the combination of warming and nitrogen addition induced more increment of these above photosynthetic parameters for Pinus tabulaeformis seedlings. However, these photosynthetic parameters of Picea asperata seedlings under the combination of warming and nitrogen addition are lower than those under nitrogen fertilization alone. The levels of active oxygen species (AOS) and malodiadehyde (MDA) in needles of the two coniferous species seedling are obviously decreased by experimental warming or additional nitrogen. Warming combined with nitrogen fertilizer reduces the activities of SOD, CAT and APX, and the contents of proline and ASA of Picea asperata seedlings, but the combination significantly increases activities of these antioxidant enzymes in needlels of Pinus tabulaeformis seedlings and further improves the accumulation of proline and ASA compared to either artificial warming or nitrogen addition. Therefore, the rate of O2 - production, the contents of H2O2 and MDA in needles of Pinus tabulaeformis seedlings are remarkably reduced by the combination of warming and nitrogen addition, but the combination only significantly decreased the rate of O2 - production of Picea asperata seedlings. Elevated temperature or nitrogen fertilization decrease the contents of P, Ca, Mg but increase Cu, Zn, Mn contents for Picea asperata seedlings. For Pinus tabulaeformis seedlings, elevated temperature alone and nitrogen fertilization alone decreased Ca, but increased P, Mg, Cu, Zn, Mn contents. The effects of the combination of warming and nitrogen addition on these element contents in needles of Picea asperata seedlings are added or multiplied the effects of warming and nitrogen addition alone, resulting in less contens of P, Ca, Mg and more contents of Cu, Zn, Mn than either elevated temperature or nitrogen fertilization. Howere, these adding or multipluing single-factor effects on contents of these elements are not observed in the case of Pinus tabulaeformis seedlings. In conclusion, growth parameters, photosynthetic capacities and antioxidant abilities of Picea tasperata and Pinus abulaeformis seedlings are improved by experimental warming or nitrogen fertilization. Interestingly, the positive effects of warming and nitrogen addition on growth and physiological performances are not multiplied by the combination of elevated temperature and nitrogen fertilization, even dempened for Picea asperata seedlings. However, for Pinus tabulaeformis seedlings, growth and physiological performances are further improved by the combination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

维生素(Vitamin)又称维他命,为“万年青”产品,是维持人体生命健康必需的一类低分子有机化合物质。维生素对人体健康的作用人们研究很多, 维生素可以增强人体对感染的抵抗力,降低出生缺陷及降低癌症和心脏病发病率等,一旦缺乏,肌体代谢就会失去平衡,免疫力下降,各种疾病,病毒就会趁虚而入;而维生素对作物影响的研究却很少。目前为止,尚无对用维生素浸种的方法来研究外源维生素是否对小麦种子萌发及幼苗生长起调节作用的报道,且对其在小麦抗逆性方面影响的研究甚少,对盐的胁迫抗性研究尚未有人报道。小麦(Triticum aestivum L.)属于拒盐的淡土性作物。盐害不利于小麦生长,严重影响小麦的产量和品质。本研究采用4 种不同维生素VB1、VC、VB6、VPP,分别对供试小麦品种川育12(红皮)、川育16(白皮)小麦浸种后,在一般自然条件下和逆境(盐胁迫条件)下,进行试验。探讨在正常情况下与在不同盐浓度条件下,各维生素及盐浓度对小麦发芽及幼苗生长的影响,并且比较两种不同皮色的小麦在相同盐胁迫条件下的差异表现,同时研究维生素处理的特异性,且哪种维生素对盐害缓解作用最佳。研究结果表明:在无盐胁迫(自然)条件下,对用4 种不同维生素VB1、VC、VB6、VPP 浸种小麦川育12、川育16 后的种子萌发及幼苗生长(幼苗的根长、根重、苗高、苗鲜重)的研究结果表明:4 种外源维生素浸种均对小麦发芽有调节作用,都能提高其最终发芽率。但是提高幅度有所差异。用VB6 浸种后的小麦提高幅度最多,VC 次之,VPP 提高幅度最小。同时,4 种外源维生素浸种对小麦种子的出芽速度及芽后长势也有一定的影响。VB6、VC 处理的小麦种子出芽速度最快,萌发后长势最好;VB1 出芽速度相对较慢,VPP 最慢,但都大于对照;VB1 处理长势略高于对照,VPP 处理的小麦长势则低于对照。从整体来看,VB6、VC处理促进效应明显, VB1 次之,而VPP 在某些方面无效甚至产生负效应。此外,相同的维生素处理对不同的品种的种子萌发、生长效果也存在差异,各种维生素作用于川育12 的效应均强于对川育16。进一步对幼苗根系TTC 还原力及幼苗叶片中硝酸还原酶活性进行测定、分析。研究发现:并非所有种类的维生素对幼苗根系TTC 还原力及幼苗叶片中硝酸还原酶活性的提高都有帮助。幼苗根系TTC 还原力在不同维生素处理下存在显著差异,而与小麦品种关系甚微。经VB6、VC 处理后,根系TTC 还原力测定值均显著高于对照,VB1 不明显,VPP 则略低于对照。VB6、VC 处理的幼苗叶片中硝酸还原酶的含量大于对照,VB1 与对照相差无几,而VPP 处理的川育12 幼苗叶片中的硝酸还原酶活性比对照CK 略高,而在川育16 中则略比对照CK 有所下降,呈现出抑制效应。综上结果表明:VB6、VC 具有促进种子发芽,幼苗生长及根系生长的作用,是较好的促生长剂;VPP 具有抑制作用,是较好的抑制剂,可进一步研究、开发利用。在盐胁迫条件下,对用4 种不同维生素VB1、VC、VB6、VPP 浸种川育12、川育16 后的种子萌发及幼苗生长(幼苗的根长、根重、苗高、苗鲜重)的研究结果表明:在不同盐浓度胁迫条件下, 各处理的种子萌发及幼苗生长均受到不同程度的抑制。随着盐浓度的增加, 发芽率、发芽指数和活力指数成下降趋势;幼苗的根长、根重、苗高、苗鲜重不断降低。4 种维生素处理间也表现出较大差异。VB6、VC 在每个处理中均保持对盐害的缓解作用,VB6 较VC 更易于促进发芽及幼苗生长。最终发芽率高,根系多、长、重,苗高高、重。而VB1、VPP 则表现出抑制作用。在高盐浓度150mM 时,4 种维生素浸种后的种子,其最终发芽率均不能达到40%,但VB6、VC 处理最终发芽率、苗重、根重均高于对照,VPP 最终发芽率、苗重、根重均低于对照。进一步对幼苗根系TTC 还原力及幼苗叶片中脯氨酸含量进行测定、分析。研究发现:不同盐浓度,不同维生素处理、不同品种间存在差异。随着盐浓度的增加(75mM,100mM,150mM),幼苗根系TTC 还原力活性成下降趋势,幼苗叶片中脯氨酸的积累量成上升趋势。VB6 处理脯氨酸含量增加最为明显,VC 次之,VPP 与对照接近,其变化幅度最小。经VB6、VC 处理后的幼苗根系还原强度,在不同盐浓度下,测定值均显著高于对照,VB1 不明显,VPP 则低于对照,产生负效应。此外,品种间表现不尽相同,相同的维生素处理,相同的盐浓度对不同的品种的种子萌发、生长效果也存在差异, 4 种维生素对川育16 的作用均强于川育12,但其影响趋势是一致的。说明VB6、VC 具有耐(抗)盐性,可以促进种子发芽和幼苗生长,是较好的耐(抗)盐拌种剂。 Vitamin is one kind of necessary low molecular compound for humans tosustain health and life. Lots of Studies have been done on the effectc of the vitaminsfor people. Vitamin can help people improve the body's natural resistance to disease,Drop the rate of birth defects、cacers and the incidence of the heart diseases. Ifpeople have less of them, the metabolism of the organism may throw off balance,immunity may drop off, and catch disease; Though the effects for Vitamin to thecrops are limited. up to now, there’s no one use soking seeds of wheats with vitaminsas a method, to study on how the effects will happen on the wheat seed germinationand seedling growth, and there are only few reserches on antireversion force forwheats ,none for the antireversion force in Sault stress condition.Wheat(Triticum aestivum L.)is sensitive to the salt, so the salt damage will doharm to wheat’s growth, it will have an unfavorable impact on the output and thequality of wheat.On this reaserch, we Soaking CHY12(red)、CHY16 (white) wheat seeds withVitamin C, B1, PP, B6 (50mg/L) as a pretreatment first. Then under two condition: one is in the normal environment the other is in different Salinity, we begin ourexperiments. Then disscuss on if the vitamin and salinity affect the wheat seedgermination and seedling growth, and what is the different between the two of them,the result shows that:Under the normal condition, after soaking seeds with VB1、VC、VB6、Vpp,we study on the their seed germination and the seeding growth(the root length andweights, The seedling heights and weights), it shows that all of those four kinds ofvitamin can adjust the seed germination, but different in The growth rate. VB6 isbest for increase, VC comes second,VPP is the worst. Meanwhile, those four vitaminalso have effect on the speed of the sprouting of the wheat. VB6、Vc can faster theseed germination most, and the seedlings are all doing well; VB1 do little effects onthe budding, Vpp is the worst, but all treatments are better than CK; but in Vi, VB1some what above the CK, while VPP lower than that. On the whole, the acceleratingeffect of VB6、VC are obvious, VB1 takes second place, but VPP in some aspects arenoneffective even have negative effect. Furthermore, different kind of seeds with thesame vitamin may different in seed germination and seedling growth, four vitaminson CHY16 is better than CHY12.More studies on TTC reductive capacity of roots and the activity of nitratereductase in the leaves, the reasult shows not all the vitamin can help the seedlings toimprove the TTC reductive capacity and the activity of nitrate reductase. TTCreductive capacity in different treatments shows significant differences,but notcorrelate to the variety of the wheat. The TTC reductive capacity of VB6、Vctreatments are all higher than CK, VB1 is nearly the same as CK, VPP is a littlelower than CK. Through the study of acivity of nitrate reductase, it shows that,VB6、VC are higher than CK ,VB1 is nearly the same as CK also, VPP is a little higher inthe CK of CHY12 but lower in CHY16. Through all the results above: VB6、Vc helpthe wheat seed germination, seedling growth and the growth of roots, is theperfectable factor of stimulating the growth; Vpp is a inhibition, that’ll be furtherreserch,and well develop and utilize in the future.Under the different Salinity condition, after soaking seeds with VB1、VC、VB6、Vpp,we study on the their seed germination and the seeding growth(the root lengthand weights, The seedling heights and weights), it shows that: under differentsalinity, the seed germination and the seedling growth of any treatment are inhibited.With the increase of the concentration, the germination rate, Vi、Gi all had fallen; theroot length and weight, the seedling heights and weights steadily sank down. There are also have pronounced difference between all treatments with four differentvitamins.VB6、VC in all treatments are alleviative the salt damage, VB6 is easier tocause to put forth buds than VC, and it’s quantitative value is the highest in theultimate germination rate, in root and seedlings’ hight and weight. Though the VPP、VB1 are seems to inhibite its growth. Under the high concentration150mM Nacl, theultimate germination rate in all treatments are below the 40%, but VB6、VC’squantitative values in any experiments are higher than CK,while VPP lower thanCK.Then we study on the TTC reductive capacity of roots and the content of Polinein leaves, the result shows that between the different salinity, different vitamintreatments, different varieties of the wheat have discrepancy.along with theincreasing concentraion of the salinity(75mM,100mM,150mM),TTC reductivecapacity of roots decreases, the accumulation of the content of Poline in leaves havean upward trend. The increase of VB6’s treatment are obviously, VC comessecond,VPP is nearly come up with CK, changes a little. In TTC reductive capacity of roots’s reserch, VB6、VC are higher than CK at any time,VB1 is not palpable,VPP is lower than CK, makes negative affect on wheat. In addition, varieties of thewheats are remain different, no matter it shows promoting or inhibiting, all fourvitamins have moreobvious effects on CHY16 than CHY12, but the tendency of theeffection are the same. It is say that VB6、VC can help wheat to standwith the saultwell, and promot in growth,they are the better reagent to mix with the seed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

组特殊自养氨氧化混合种群,表现:无机环境种群生长迅速、生物量高;在一个完全无机的自养生长环境中,不仅保持高氨氧化速率,并出现丰富的异养微生物种群;该种群置于异养、厌氧环境中,迅速表现出产氢特征。对于这样一个特殊的生态体系,研究其共生机理,以及联接这些种群之间的碳源和能源问题,将具有非常重要意义。我们拟从种群特征、细胞表面分泌产物、游离体系产物多糖、蛋白和脂肪酸方面开展研究。 第一部分,自养氨氧化混合种群的基本特征。采用氨氧化培养基,进行种群氨氧化特征研究;采用扫描电镜观察自养混合种群的微观特征;沉降、离心去除微生物种群,分析水相中的总有机碳、糖类等物质;利用LB培养基进行种群的分离、纯化,并采用DGGE手段对微生物种群结构进行分析。结果表明,接入菌种后(2/5000(V/V)),培养液中氨(200mg/L)在3-5天内快速降解;亚硝酸盐与氨氮变化呈负相关趋势,仅有少量硝酸盐含量(< 30mg/L)。氨氧化种群的生物量增长与氨氧化趋势一致,初始生物量7.75 mg/L(蛋白含量),3-5天后生物量快速增长,并达到最高63.06 mg/L(蛋白含量)。电镜图片显示,种群外包裹一层粘液。离心除去菌体后,检测培养液总有机碳和糖的含量,同样表现出与生物量增长相似的特征,分别由初始的3.73、2.35 mg/L,3-5内天迅速增加,并分别达到最大值35.19、27.45 mg/L。经初步分离、纯化并对纯化菌株进行测序,获得了10株异养微生物分别为布鲁氏菌科苍白杆菌属、纤维单孢菌、类芽孢菌属、黄杆菌属、无色杆菌、鞘脂单胞菌、嗜麦芽寡养单胞菌、噬氢菌属、硫红球菌、假单胞菌;DGGE显示,约有20分条离带,我们对其中的两条优势条带进行切割回收测序,鉴定为欧洲亚硝化单胞菌(Nitrosomonas eur)。 第二部分:混合种群自养-异养菌共生的可能机制。在对微生物种群特征初步分析基础上,针对胞外糖类组分可能被微生物代谢分解,我们重点对微生物细胞蛋白质与糖类进行分析。采用超声结合RIPA裂解液裂解,SDS-PAGE电泳分析混合种群总蛋白种类,并通过氨基酸分析仪及红外光谱法分析氨基酸组成及蛋白红外特征。采用超声破碎结合反复冻融对细胞样品进行处理,提取液采用醇沉、Sevage脱氮白,凝胶过滤方法脱盐和分级分离。对提取物的糖分析包括:紫外扫描,红外光谱,核磁共振,单糖组成分析;扫描电镜观察菌群破裂现象。SDS-PAGE分析结果表明:氨氧化种群不同生长阶段都显示出42kD蛋白表达量很高,d4时42kD蛋白表达已经很强,4-7d内一直持续这种过量表达,直到d8后表达开始减弱。说明42kD蛋白可能与氨氧化密切相关。红外光谱分析显示:细胞提取物的特征峰分布在3427.42cm-1、1718.18 cm-1和1681.72 cm-1、1160.07和1086.74 cm-1,分别对应为OH、 C=O、C-O-C基团,表明具有蛋白的典型特征;氨基酸分析显示蛋白中的Gly,Asp,Ala,Glu含量相对较高。 提取物中胞外多糖分离谱图得到不均一组分,共得到6个收集峰;紫外扫描在201-213 nm处有多糖吸收峰,同样表明多糖成分不均一性;多糖红外光谱特征峰主要分别在3400.49 cm-1、2920.28 cm-1、1154.54和1087.52 cm-1,对应OH、-CH2- or CH 、C-O-H or C-O-C等多糖特征基团;多糖提取物核磁共振1H d4.3~5.9之间出现强吸收峰,这是1H中,多糖存在的明显证据,1H NMR中,其中O-乙酰基的甲基上的氢信号为d1.1~1.3之间。糖肟全苯甲酸酯衍生物的HPLC测定中,得到单一的单糖峰,由于时间问题,还未进行更深入的试验;电镜图片显示,种群中的细胞有大量的破裂现象。 实验表明,自养氨氧化混合种群显示出快速的氨氧化速率,氨氧化过程生物量和有机质的增加明显。微生物种群包裹粘液层,并分离纯化出大量的异养菌;去除菌体后的游离培养液中存在有机质(包括多糖)说明无机自养生长体系中存在异养菌生长、繁殖的二次碳源;细胞提取物中蛋白条带数目多、种类丰富;细胞多糖提取物具有明显的多糖特征,以及单糖的存在。结合种群的显微特征和游离体系中的有机质的检测结果,我们认为,无机自养生长体系中,种群细胞生长过程中发生的破裂现象可能是导致大量的蛋白、多糖释放到游离胞外,并成为其他异养菌生长的碳源和氮源。这可能是自养体系中,大量异养菌共生的可能机制,至于是什么原因引起种群生长过程中产生的破裂现象,还有待下一步深入研究。 A group of mixed autotrophic ammonia oxidizing populations, having much biological characteristic tested by concerned personnel for pilot test: Performed rapid population growth and obtained high biomass in inorganic environment; Not only maintained a high rate of ammoxidation, promoted a wealth of heterotrophic microbial populations growth in a totally inorganic and autotrophic growth environment; Placed in heterotrophic and anaerobic environment,had the performance characteristics that could rapidly produce hydrogen.For such a special ecological system, Study its symbiotic mechanism and the connection between these populations of carbon and energy issues, will have a very important significance. We intended from the characteristics of the population, the secretion product of cell surface, free substance in the liquid medium like polysaccharide, protein and fatty acids carrying out research. Part I: The basic features of mixed autotrophic ammonia oxidizing populations . Use inorganic liquid medium, processed study for ammonia oxidation characteristics of the population; we used scanning electron microscopy to get micro-features of autotrophic ammonia oxidizing populations .The medium was carried out settlement and centrifugal then removed the microbial populations, after all of that we analysis the water phase for total organic carbon(TOC), carbohydrate and other substances; Solid ammonia oxidizing medium was adopted to separation and purification of population, DGGE means was for structure analysis of microbial population. The results showed that after the inoculum of bacteria (2 / 5000 (V / V)), ammonia in the culture medium (200 mg / L) was rapid degradation in 3-5 days; ammonia and nitrite have the negative correlation between changes in the trend, then only a small amount of nitrate content (<30mg / L). The biomass growth of ammoxidation population in line with the trend of ammonia oxidation, the initial volume of it was 7.75 mg / L (protein content), in 3-5 days upto 63.06 mg / L (protein content). Electron microscope image showed, the populations were wrapped in a layer of mucus, including the a large number ruptted micorbe , Centrifuge to remove bacteria, then detected the medium for total organic carbon and sugar content, result took on the same characteristics with biomass growth, that were from the initial 3.73、2.35 mg / L respectively, in 3-6 days achieved rapid increase in the maximum to 35.19、27.45 mg / L respectively. After initial separation、 purification ,then processed sequencing to strains purified and got the result that there were 10 heterotrophic microorganisms : Brucella Branch pale bacillus, Cellu lomonas, Bacillus species category, a Flavobacterium, colorless Bacteria, Aeromonas sheath fat, little support maltophilia Aeromonas, macrophages species hydrogen, sulphur-MI, Pseudomonas bacteria spores; DGGE display, there were 20 separation bands approximately. Part II: Mixed populations that autotrophic - heterotrophic bacteria symbiotic mechanism. On the basis of preliminary analysis of microbial population characteristics, aiming at extracellular carbohydrate components might be decomposition by microbial, we focused on microbial cell protein and carbohydrate analysis. Using ultrasound combined with RIPA lysis cracking the cells, SDS-PAGE electrophoresis analysis the total protein species of the population, and through the amino acid analyzer studied the compositions of amino acid and infrared spectroscopy analysis of a protein infrared characteristics. Using ultrasound combined with repeatedly freezing and thawing to treated the cell sample, then took the means that alcohol precipitation, deproteinization by Sevage, gel filtration aimed at desalination and grade separation to deal with the lysates . The extraction of sugar analysis included: UV scanning, IR, NMR, single-sugar composition analysis. SDS-PAGE analysis showed that: 42 kD protein expression was very high at different growth stages of mixed autotrophic ammonia oxidizing populations , on the fourth day, 42 kD protein expression had been very strong, 4-7d, it had continued this excessive expression, then started to weaken after 7 days. 42 kD protein that might be closely associated with ammonia oxidation. Infrared spectral analysis showed that: cell extracts with the characteristic that the peak distribution in 3427.42 cm-1、1718.18 cm-1 and 1681.72 cm-1、1160.07 cm-1 and 1086.74 cm-1 corresponding to OH、C = O、C-O-C Groups which had the typical characteristics of protein; and analysis showed that amino acids including Gly, Asp, Ala, Glu ,the content in the protein is relatively high. Exopolysaccharide in the extracts had the separation map that it was uneven, received a total of six collection peaks by the detection mode of phenol-sulphruic acid method ; ultraviolet scan in the 201-213 nm department had polysaccharide absorbing peak, the same ingredients that polysaccharide heterogeneity; infrared polysaccharide spectral characteristics of the main peak at 3400.49 cm-1, 2920.28 cm-1, 1154.54 and 1087.52 cm-1, corresponding OH,-CH2-or CH, C-O-H or C-O-C;and other characteristics of polysaccharide group; 1H NMR of polysaccharide extract appeared absorption peak between d4.3 ~5.9, which is the apparent evidence of polysaccharide, In 1H NMR, the hydrogen signal of one of O-acetyl was between 1.1 to 1.3. The determination of Sugar oxime whole benzoate derivatives by HPLC, there was a single-sugar peak, as a matter of time, yet more in-depth test. Summary: Mixed autotrophic ammonia oxidizing populations show us that it had the ability in ammonia oxidizing and it was great, organic matter and biomass increased significantly in the process of ammonia oxidation. Microbial populations was wrapped up slime layer, the phenomenon of cell breakdown obviously, and there were a lot of separation and purification of the heterotrophic bacteria; a lot of organic matter (including polysaccharides)remined in the medium that removal of cell indicated the inorganic system existed secondary carbon sources that could be used by the heterotrophic bacteria ; there were a large number proteins bands of cell extract, rich variety; cell extracts of polysaccharide had obvious characteristics of polysaccharide, and the existence evidence of single-sugar. Combined population of microscopic characteristics and free of organic matter in the test results, we believe that the health of inorganic system, population growth occurred in the course of the breakdown of the phenomenon is likely to lead to a lot of protein and polysaccharide released into the extracellular free, And other heterotrophic bacteria use them to the growth as carbon and nitrogen. This may be autotrophic system, the large number of heterotrophic bacteria symbiotic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

畜禽废水是农村水环境污染的主要来源之一,其处理的难点在于脱氮。传统生物脱氮法具有能耗高、需大量外加碳源等缺点,开发低成本、高效率的新型生物脱氮技术具有重要意义。 本研究将短程硝化反硝化和厌氧氨氧化两种脱氮新技术结合,让前者为后者创造去除可降解COD、降低总氮负荷、调整pH、调整氨氮和亚硝酸盐氮浓度比例等进水条件,而后者可在无需外加碳源的条件下进一步脱氮,二者结合可成为高氨氮、低C/N废水脱氮的新途径。 试验以低碳氮比猪场废水为研究对象,首先进行了短程硝化反硝化预处理研究,同时启动并运行调控厌氧氨氧化反应器,最后以经过短程硝化反硝化预处理的猪场废水为进水,进行厌氧氨氧化脱氮考察。实验表明:(1)短程硝化反硝化作为厌氧氨氧化的预处理工序是可行的。猪场废水通过短程硝化反硝化,可以达到基本去除可生化COD、部分脱氮、控制出水氨氮和亚硝酸盐氮浓度之比在1︰1左右、pH在7.5~8.0的目的, COD和总氮平均去除率分别为64.3%、49.1%,出水可达到厌氧氨氧化反应的进水要求。(2)采用模拟废水启动厌氧氨氧化反应器,经过5个月左右的运行调控,反应器启动成功并稳定运行,最高总氮去除率为87.1%,总氮容积去除率最高达到0.14kg/m3.d;整个稳定阶段,氨氮、亚硝酸盐氮、硝酸盐氮的变化量之比为1︰1.21︰0.33。(3)经过短程硝化反硝化预处理的猪场废水厌氧氨氧化脱氮效果稳定,氨氮、亚硝酸盐氮、总氮、COD的平均去除率分别为93.0%、99.4%、84.6%、18.1%,处理效果与模拟废水处理系统相比无明显变化。(4)经过短程硝化反硝化预处理后,猪场废水中残留有机物成分在厌氧氨氧化反应过程中无显著变化,主要为酯类和烷烃类物质;残留有机物对厌氧氨氧化效果无明显影响。(5)采用PCR技术进行特殊功能菌种检测,结果表明模拟废水处理系统和猪场废水处理系统的菌群中均含有厌氧氨氧化菌和好氧硝化菌;通过blast比对,厌氧氨氧化菌扩增序列与未培养的Planctomycetales菌和Candidatus Brocadia fulgida菌16S rRNA部分序列相似性分别为95%、90%。(6)MPN法菌种计数结果显示,模拟废水处理系统和猪场废水处理系统的菌群中均含有硝化细菌、亚硝化细菌和少量反硝化菌,实验条件下的微生物系统是一个厌氧氨氧化菌与好氧硝化菌、反硝化菌共存的系统。 Poultry wastewater is one of the main source of water pollution in rural areas,and nitrogen removal is the most difficult part in treating poultry wastewater. There are some disadvantages in traditional nitrogen removal, such as high energy consumption and more additional organic carbon. It is important to develop ecolomical and efficient technologyies. Shortcut nitricfication/denitrification, as a pretreatment process, was combined with Anammox in this research, so that part of total nitrogen and most degradable COD could be removed by the former, and further nitrogen removal could be implemented by the latter. The combination of the two technologies was a new approach to treat wastewater with high ammonium and low C/N. Piggery wastewater with low C/N was treated in lab-scale experiment. Firstly, shortcut nitrification/denitrification was investigated, and Anammox reactor was started up successfully at the same time. Then piggery wastewater after pretreatment was treated by Anammox. The results showed :(1) It was feasible to take nitrification/denitrification as the pretreatment process of Anammox. By using this process, part of total nitrogen and COD were removed, the ratio of ammonium and nitrite reached around 1︰1 and the pH was about 7.8, which were favorable for Anammox. The average removal percentage of COD and total nitrogen were about 64.3% and 49.1%, respectively. (2) Simulated wastewater was used to start up Anammox reactor. The reactor was started up successfully within 5 months and stable performance was achieved. The highest nitrogen removal reached 87.1% and the biggest volumetric total nitrogen removal rate reached 0.14kg/m3.d. The average ratio of ammonium, nitrite and nitrate was 1:1.21:0.33. (3)Taking the effluent of shortcut nitrification/denitrification as the influent, the nitrogen removal efficiency of Anammox was stable, and the the average removal percentage of ammonium, nitrite, total nitrogen and COD were 93.0%, 99.4% , 84.6% and 18.1%, respectively, which had little difference with that by using simulated wastewater..(4) After pretreatment, the residual organic carbon in piggery wastewater showed no obvious change during the Anammox process, and the main organic compounds were saturated hydrocarbon and ester, which had no obvious negative effect on Anammox process.(5) By PCR technology, the existence of Anammox bacteria was confirmed and the aerobic nitrifying bacteria was found to coexist as well. The result of blast showed that the identities of Anammox bacterium to part of 16S rRNA sequence of uncultured Planctomycetales bacterium and Candidatus Brocadia fulgida bacterium were 95% and 90%, respectively.(6)By MPN method, nitrite oxidizer, ammonium oxidizer and denitrification bacteria were detected in both simulated and piggery wastewater treatment system of Anammox, and the microorganism system was composed of Anammox bacteria,aerobic bacteria and denitrification bacteria together.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

自养硝化过程在自然界氮素循环和污水处理系统脱氮过程中起着关键作用。因此,了解有机碳对硝化的影响和硝化菌与异养菌之间的竞争对微生物生态学和污水处理系统设计都很重要。目前对氨氧化到硝酸盐氮过程的研究文献很多,但对亚硝酸盐氧化过程在异养菌的存在下如何受到有机碳影响的研究甚少。本文从生理生化指标、基因组学、蛋白组学三方面考察了在实验室条件下有机碳(乙酸钠)对硝化细菌和异养菌组成的混合菌群的硝化性能、菌群结构及代谢功能的变化的影响。 全文分为两大部分: 第一部分为乙酸钠对游离态硝化混合菌群的硝化性能和菌群结构的短期影响。混合菌株先在自养条件下进行连续培养,两个月后硝化速率达到20 mg N/(L·d);而后离心收集菌体进行批式实验。在批式反应器中,初始亚硝氮均为126mg N/ L,乙酸钠-C 与亚硝酸盐-N 的比分别为0,0.44,0.88,4.41,8.82。结果表明:在低C/N 比(0.44 和0.88)时,亚硝酸盐去除速率比C/N=0 下高,细菌呈现一次生长;而在高C/N 比(4.41 和8.82)时,出现连续的硝化反硝化,亚硝酸盐去除率仍比对照下高,细菌呈现二次生长。不同C/N 比下微生物群落明显不同,优势菌群从自养和寡营养细菌体系(包括亚硝酸盐氧化菌,拟杆菌门,α-变形菌纲,浮霉菌门和绿色非硫细菌下的一些菌株)过渡到异养和反硝化菌体系 (γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas stutzeri 和P. nitroreducens 占主导)。 第二部分为乙酸钠对硝化混合菌群生物膜的硝化性能和菌群结构的长期影响。接种富集的硝化混合菌群于装有组合式填料的三角瓶中,于摇床中自养培养;两个月后填料上形成生物膜的硝化速率达到20 mg N/ (L·d);而后进行长期实验,每12 小时更换混合营养培养基(亚硝氮约200 mg N/ L,C/N 比同上)。结果显示:相较于C/N 比=0 时的亚硝酸盐氧化反应来说,低C/N 比出现了部分的反硝化,而高C/N 比则是几乎完全的反硝化。与对照比,C/N=0.44 时亚硝酸盐氧化速率并未受乙酸钠的影响,反而上升了,但C/N=0.88 时亚硝酸盐氧化速率有所下降。菌群结构分析表明自养对照与混合营养下微生物群落的不同;PCR-DGGE未检测出混合营养下硝化杆菌的存在,而显示异养菌尤其是反硝化菌的大量存 在。荧光定量PCR 结果表明随C/N 比上升,硝化杆菌数量从2.42 × 104 下降到1.34× 103 16S rRNA gene copies/ ng DNA,反硝化菌由0 增加至2.51 × 104 nosZgene copies/ ng DNA。SDS-PAGE 的结果表明不同C/N 比下的蛋白组较为复杂且呈现一定的差异性。 有机碳对亚硝氮氧化及微生物群落的影响很复杂,本文分别讨论了对游离态和生物膜固定态两种状态的混合菌群相应的短期和长期影响研究。研究发现,有机碳并非一定带来硝化的负影响,如果控制在适当的C/N 比范围,有机碳是有利于亚硝氮氧化的。这些发现阐明了有机碳和硝化反硝化的关系,填补了硝化微生物生态学上的空白,对污水处理系统中减少异养菌的影响并提高氮去除率有一定理论指导意义。 Nitrification plays a key role in the biological removal of nitrogen in both nature and wastewater treatment plant (WWTP). So, understanding of the effect of organic carbon on nitrification and the competition between nitrifying bacteria and heterotrophic bacteria is important for both microbial ecology and WWTP design and operation. Despite the fact that the nitrification process of ammonia to nitrate has been extensively investigated, it is not known how the process of nitrite oxidization is affected by organic carbon when heterotrophic bacteria are present. By measuring different physiological and biochemical parameters, as well as using genomic DNA and proteome analysis, we investigated the influence of organic (acetate) on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria under laboratory conditions. The dissertation involves two parts: Part one deals with the effect of organic matter on functional performance and bacterial community shift of nitrite-oxidizing and heterotrophic bacteria under suspended state. The bacteria were prepared in a continuous-flow stirred reactor under autotrophic condition; after two months, the nitrification rate of the culture reached about 20 mg N/ (L·d); then the bacteria were harvested for the next batch experiments. The initial concentrations of nitrite were 126 ± 6 mg N/ L in all flasks, and sodium acetate (C) to nitrite (N) ratios were 0, 0.44, 0.88, 4.41, and 8.82, respectively. The results showed that at low C/N ratios (0.44 or 0.88), the nitrite removal rate was higher than that obtained under autotrophic condition and the bacteria had single growth phase, while at high C/N ratios (4.41 or 8.82), continuous aerobic nitrification and denitrification occurred besides higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different C/N ratios; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). Part two describes the influence of acetate on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria in biofilms. Bacterial enrichments was transferred into flasks with polypropylene carriers and cultured under agitated and autotrophic condition. After two month, the biofilms grown on the carriers had a nitrification rate of about 20 mg N/ (L·h); then the biofilms were refreshed with mixotrophic medium (nitrite were 200 mg N/ L in all flasks, and C/N ratios was the same as above) every 12 h. the results show: normal nitrite oxidization reactions were performed when C/N = 0, but nitrite oxidization and partial denitrification occurred with low C/N ratios (0.44 or 0.88). At high C/N ratios (4.41 or 8.82), we mainly observed denitrification. In contrast to C/N = 0, the nitrite oxidization rate was unaffected when C/N = 0.44, but decreased with C/N = 0.88. The structure of bacterial communities varied significantly between autotrophic and mixotrophic conditions. Nitrobacter was hard to detect by PCR-DGGE while heterotrophs and especially denitrifiers were in the majority under mixotrophic conditions. Real-time PCR indicated that the Nitrobacter population decreased from 2.42 × 104 to 1.34 × 103 16S rRNA gene copies/ ng DNA, while the quantity of denitrifiers obviously increased from 0 to 2.51×104 nosZ gene copies/ ng DNA with an increasing C/N ratio. SDS-PAGE indicated the complexity of and a certain difference between the proteome of nitrite-oxidizing and heterotrophic bacteria at different C/N ratios. We conclude that the influence of organic matter on nitrite oxidation and the community structure of NOB and heterotrophic bacteria is complex. In this dissertation, we focused on how sodium acetate influenced the system both under suspended state and in biofilms. We observed that acetate did not necessarily have a negative impact on nitrification. Instead, an appropriate amount of acetate benefited both nitrite oxidization and denitrification. These findings provide a greater understanding about the relationship between organics and nitrification; they fill the gaps in the field of microbial ecology of nitrifying bacteria; they also provide insight into how to minimize the negative impact of heterotrophic bacteria and maximize the benefit of nitrogen removal in biological treatment systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel catalyst supported on carbon was made by reduction of nickelous nitrate with hydrogen at high temperature. Ni/ C catalyst characterization was carried out by XRD. It was found that the crystal phase of NiS and NiS2 appeared in the impregnated catalyst. Ni/ C and Pt/ C catalysts gave high performance as the positive and negative electrodes of a sodium polysulfide/ bromine energy storage cell, respectively. The overpotentials of the positive and negative electrodes were investigated. The effect of the electrocatalyst loading and operating temperature on the charge and discharge performance of the cell was investigated. A power density of up to 0.64 W cm(-2) ( V = 1.07 V) was obtained in this energy storage cell. A cell potential efficiency of up to 88.2% was obtained when both charge and discharge current densities were 0.1 A cm(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is presented for determining production and consumption rates of .OH radicals produced photochemically in natural surface waters. It is based on the determination of the kinetics by which the concentration of a specified trace compound decreases during irradiation. In samples from Lake Greifensee (Switzerland) low production rates for .OH limit its possible effects. In addition, fast consumptions by the natural dissolved organic solutes and by the bicarbonate protect organic micropollutants from oxidation by .OH. Neither direct nor indirect H2O2 photolysis was a significant source of .OH in the lakewater studied lacking iron, whereas nitrate photolysis could have been a source. Comparison with reaction kinetic formulations allows generalizations for other types of waters.