907 resultados para Niobium addition
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Geociências, Programa de Pós-Graduação em Geologia, 2015.
Resumo:
Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites
Resumo:
Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.
Resumo:
Biomass is the world’s most important renewable carbon source, whose major component, carbohydrates, can be valorized by transformation into biofuels and high value-added chemicals. Among the latter, 5-hydroxymethylfurfural (HMF), obtained by C6 carbohydrates dehydration, is a versatile and key intermediate for the production of a large spectrum of biobased chemicals. Different catalytic systems have been evaluated for HMF production, mostly based on heterogeneous catalysis as alternative to the use of conventional mineral acids [1]. Moreover, niobium oxide has shown interesting properties as acid catalyst for dehydration of sugars [2-3]. On the other hand, the high surface area and large pore size of mesoporous solids make them suitable for many catalytic processes. In the present work, the dehydration of glucose to HMF has been evaluated by using different mesoporous mixed Nb2O5-ZrO2 in a biphasic water–Methyl Isobutyl Ketone (MIBK) solvent system to avoid the HMF degradation. Different experimental parameters, such as reaction temperature and time, as well as the addition of CaCl2 have been studied in order to maximize the HMF yield.N2 adsorption-desorption isotherms have corroborated the mesostructured character of catalysts, being all isotherms of Type IV according to the IUPAC classification. BET surface area decreases for catalysts with higher Zr content (Table 1). Likewise, pore volume and average pore diameter values diminish after Zr incorporation. Concerning the acid properties, a clear correlation between Nb and acidity can be observed, in such a way that total acidity, as deduced from NH3-TPD, decreases when the Zr content rises, and consequently the amount of Nb is reduced.These mesoporous Nb-Zr catalysts have been tested in the dehydration of glucose to HMF at 175 ºC under batch operation in aqueous solution, using MIBK as co-solvent. It can be observed that both glucose conversion and HMF yield increase with the Nb content, being maximum (90% and 36%, respectively) after 90 minutes for Nb2O5. This trend changes when CaCl2 is added to the reaction medium, improving the catalytic performance of mixed oxides and ZrO2, but Nb2O5 maintains similar results than without salt addition. This could be justified by the interaction between CaCl2 and Lewis acid sites, since zirconium oxide possesses a higher amount of this acid sites type.
Resumo:
In this work, the liquid-liquid and solid-liquid phase behaviour of ten aqueous pseudo-binary and three binary systems containing polyethylene glycol (PEG) 2050, polyethylene glycol 35000, aniline, N,N-dimethylaniline and water, in the temperature range 298.15-350.15 K and at ambient pressure of 0.1 MPa, was studied. The obtained temperature-composition phase diagrams showed that the only functional co-solvent was PEG2050 for aniline in water, while PEG35000 even showed a clear anti-solvent effect in the N,N-dimethylaniline aqueous system. The experimental solid-liquid equilibria (SLE) data have been correlated by the non-random two-liquid (NRTL) model, and the correlation results are in accordance with the experimental results.
Resumo:
The permeability of dispersion barriers produced from polyvinyl alcohol (PVOH) and kaolin clay blends coated onto polymeric supports has been studied by employing two different measurement methods: the oxygen transmission rate (OTR) and the ambient oxygen ingress rate (AOIR). Coatings with different thicknesses and kaolin contents were studied. Structural information of the dispersion-barrier coatings was obtained by Fourier transform infrared spectroscopy (FTIR) spectroscopy and scanning electron microscopy (SEM). These results showed that the kaolin content influences both the orientation of the kaolin and the degree of crystallinity of the PVOH coating. Increased kaolin content increased the alignment of the kaolin platelets to the basal plane of the coating. Higher kaolin content was accompanied by higher degree of crystallinity of the PVOH. The barrier thickness proved to be less important in the early stages of the mass transport process, whereas it had a significant influence on the steady-state permeability. The results from this study demonstrate the need for better understanding of how permeability is influenced by (chemical and physical) structure.
Resumo:
Cabeça de xara is a ready-to-eat meat product, whose production is very characteristic in Alentejo, a particular region of Portugal. It is a galantine usually moulded into parallelepiped shape made with various meats obtained from the Alentejano pig breed reared in the same region, namely deboned pork heads, tongue and connective tissue to which a number of condiments like salt, parsley, wine and pepper, are added. This work intended to test the feasibility of adding vinegar in order to increase the shelf-life of cabeça de xara, by reducing the contaminating microbiota responsible for spoilage, as well as controlling the pathogen Listeria monocytogenes. Three independent batches were produced and proximate composition, pH, aw, microbiological parameters and biogenic amines content evaluated. A sensory analysis was also performed throughout the storage period. No significant differences between control and vinegar samples was found regarding the proximate composition of cabeça de xara. As expected, pH is lower in the vinegar samples, however no differences in aw were observed between the two treatments. L. monocytogenes was present from the first month on only in one batch in the control treatment. However, it is inhibited by the addition of vinegar until the third month of storage, where L. monocytogenes is present but below the limit established in the 2073/2005 regulation. The presence of vinegar significantly decreased the content in biogenic amines, particularly cadaverine, putrescine and tyramine, throughout the storage period. Concerning sensory evaluation, no vinegar taste was reported by the panellists in a depreciating way.