972 resultados para Niobium Pentachloride
Resumo:
Zircons from the oldest magmatic and metasedimentary rocks in the Podolia domain of the Ukrainian shield were studied and dated by the U-Pb method on a NORDSIM secondary-ion mass spectrometer. Age of zircon cores in enderbite gneisses sampled in the Kazachii Yar and Odessa quarries on the opposite banks of the Yuzhnyi Bug River reaches 3790 Ma. Cores of terrigenous zircons in quartzites from the Odessa quarry as well as in garnet gneisses from the Zaval'e graphite quarry have age within 3650-3750 Ma. Zircon rims record two metamorphic events around 2750-2850 Ma and 1900-2000 Ma. Extremely low U content in zircons of the second age group indicates conditions of the granulite facies metamorphism in Paleoproterozoic within the Podolia domain. Measured data on orthorocks (enderbite-gneiss) and metasedimentary rocks unambiguously suggest existence of the ancient Paleoarchean crust in the Podolia (Dniester-Bug) domain of the Ukrainian shield. They contribute in our knowledge of scales of formation and geochemical features of the primordial crust.
Resumo:
The book deals with results of complex geological and geophysical studies in the Doldrums and Arkhangelsky Fracture Zones of the Central Atlantic. Description of the main features of bottom relief, sediments and crustal structure, geomagnetic field, composition of igneous and sedimentary rocks are given in the book. The authors made conclusions on tectonic delamination of the oceanic crust and existence of specific rock complexes forming non-spreading blocks
Resumo:
Major-, trace-, and rare-earth element analyses of the basaltic rocks recovered from the basement of the Sulu Sea and of lithic clasts from the pyroclastic unit representing the acoustic basement of the Cagayan Ridge, are presented. The major and trace elements were measured by X-ray fluorescence techniques, and rare-earth elements by instrumental neutron activation analysis. These data show that the Sulu Sea basalts are back-arc tholeiites and the lithic clasts are basalts, basaltic andesites, and andesites typical of volcanic arc suites erupted on continental crust. Petrogenetic modeling is used to show that the Sulu Sea basalts were derived from a heterogeneous mantle, probably representing subcontinental lithosphere, with contributions from a subduction component. The Sulu Sea is interpreted as a back-arc basin formed by rifting of an Oligocene to early Miocene volcanic arc leaving the Cagayan Ridge as a remnant arc. This event occurred during northward subduction of the Celebes Sea basement beneath the Oligocene to early Miocene arc.
Resumo:
The basalts recovered from the Costa Rica Rift by drilling at Deep Sea Drilling Project Sites 501, 504, and 505 during Legs 68, 69 and 70 of the Glomar Challenger are the most depleted in the most-hygromagmaphile elements (Th, Ta, Nb, and La) of all MORB recovered to date by the Glomar Challenger. The invariant ratios Nb/Ta, Zr/Hf, and Y/Tb show "chondritic values" (expected for Nb/Ta because of the very low concentrations in these elements). Four samples from a single unit are exceptions: they present a flat to slightly enriched, extended Coryell-Masuda plot, and at the same time their La/Ta ratio is 9 (normalized ratio = 1) instead of 19 (normalized ratio = 2), the value for all other samples. Only one of these two values of the La/Ta ratio had been found so far within a single hole, and moreover within large areas of the oceanic crust (several holes or dredges). The present result shows that local heterogeneity of the upper mantle with respect to the La/Ta ratio may exist.
Resumo:
Basalts recovered on DSDP Leg 92 include all the major basalt types so far recovered from the ocean crust of the eastern Pacific. Basalts from Holes 597, 597A, 597B, 597C, and 599B are tholeiites exhibiting all the mineralogical and geochemical characteristics of N-type mid-ocean ridge basalts (MORB). Fragments of ferrobasalts and alkali basalts were also obtained, however, from Holes 60IB and 602B, respectively. Hole 597C, which penetrated 91 m into basement and is the deepest hole so far drilled in fast-spreading crust, yielded basalts that can be divided into three major lithologic units. The lowest unit, Unit III, contains modal olivine and comprises basalts which, at about 8 to 10% MgO, are as basic as any sampled from fast-spreading crust. The middle unit, Unit II, is the most evolved; its basalts are olivine free and contain between 6 and 7.5% MgO. The upper unit, Unit I, is intermediate in composition between Units II and III; it is characterized by both modal olivine and glomerocrysts made up of plagioclase and rare olivine. Unit I is probably a massive flow, whereas Units II and III may be massive flows or sills. The basalts appear to have undergone three stages of alteration ("deuteric," "relatively reducing," and "oxidizing"), the intensity of alteration decreasing markedly downcore. Hole 597B, at 26.4 m of basement penetration the only other "deep" hole, contains just one lithologic unit, which closely resembles Unit I of Hole 597C. Petrogenetic modeling reveals that the three lithologic units in Hole 597C are cogenetic and that they were derived from a depleted mantle source similar to the source of the tholeiites and ferrobasalts sampled in other holes; the alkali basalts are the only rocks derived from enriched mantle. Lavas of Unit III probably lay on the olivine-plagioclase cotectic, whereas the other lavas lay on an olivine-plagioclase-clinopyroxene peritectic. Some 60% of closed-system crystallization is needed to generate the most-evolved from the last-fractionated tholeiite, and a further 50% crystallization (80% overall) is needed to generate the ferrobasalts. Xenocrysts of calcic plagioclase and pseudomorphosed olivine in tholeiites from Hole 597B and Unit I of Hole 597C, and in the ferrobasalts from Hole 601B, provide evidence, however, that some magma mixing may have taken place.