969 resultados para Neural correlates
Resumo:
Background Recommendations by the UK Department of Health suggest that protection from neural tube defects (NTD) can be achieved through intakes of an extra 400 mu g daily of folate/folic acid as natural food, foods fortified with folic acid, or supplements. The assumption is that all three routes of intervention would have equal effects on folate status.
Methods We assessed the effectiveness of these suggested routes of intervention in optimising folate status. 62 women were recruited from the University staff and students to take part in a 3-month intervention study. Participants were randomly assigned to one of the following five groups: folic acid supplement (400 mu g/day; I); folic-acid-fortified foods (an additional 400 mu g/day; II); dietary folate (an additional 400 mu g/day; III); dietary advice (IV), and control (V). Responses to intervention were assessed as changes in red-cell folate between preintervention and postintervention values.
Findings 41 women completed the intervention study. Red-cell folate concentrations increased significantly over the 3 months in the groups taking folic acid supplements (group I) or food fortified with folic acid (group II) only (p<0.01 for both groups). By contrast, although aggressive intervention with dietary folate (group III) or dietary advice (group IV) significantly increased intake of food folate (p<0.001 and p<0.05, respectively), there was no significant change in folate status.
Interpretation We have shown that compared with supplements and fortified food, consumption of extra folate as natural food folate is relatively ineffective at increasing folate status. We believe that advice to women to consume folate-rich foods as a means to optimise folate status is misleading.
Resumo:
Abstract: Background: A20 and TAX1BP1 interact to negatively regulate NF-
-driven inflammation. A20 expression is altered in F508del/F508del
patients. Here we explore the effect of CFTR and CFTR genotype on A20 and
TAX1BP1expression. The relationship with lung function is also assessed.
Methods: Primary Nasal Epithelial cells (NECs) from CF patients
(F508del/F508del, n=8, R117H/F508del, n=6) and Controls (age-matched,
n=8), and 16HBE14o- cells were investigated. A20 and TAX1BP1 gene
expression was determined by qPCR.
Results: Silencing of CFTR reduced basal A20 expression. Following LPS
stimulation A20 and TAX1BP1 expression was induced in control NECs and
reduced in CF NECs, broadly reflecting the CF genotype: F508del/F508del
had lower expression than R117H/F508del. A20, but not TAX1BP1 expression,
was proportional to FEV1 in all CF patients (r=0.968, p<0.001).
Conclusions: A20 expression is reduced in CF and is proportional to FEV1.
Pending confirmation in a larger study, A20 may prove a novel predictor
of CF inflammation/disease severity.
Resumo:
Besides making contact with an approaching ball at the proper place and time, hitting requires control of the effector velocity at contact. A dynamical neural network for the planning of hitting movements was derived in order to account for both these requirements. The model in question implements continuous required velocity control by extending the Vector Integration To Endpoint model while providing explicit control of effector velocity at interception. It was shown that the planned movement trajectories generated by the model agreed qualitatively with the kinematics of hitting movements as observed in two recent experiments. Outstanding features of this comparison concerned the timing and amplitude of the empirical backswing movements, which were largely consistent with the predictions from the model. Several theoretical implications as well as the informational basis and possible neural underpinnings of the model were discussed.
Resumo:
Research has been undertaken to investigate the use of artificial neural network (ANN) techniques to improve the performance of a low bit-rate vector transform coder. Considerable improvements in the perceptual quality of the coded speech have been obtained. New ANN-based methods for vector quantiser (VQ) design and for the adaptive updating of VQ codebook are introduced for use in speech coding applications.
Resumo:
Event-related potentials (ERPs) and other electroencephalographic (EEG) evidence show that frontal brain areas of higher and lower socioeconomic status (SES) children are recruited differently during selective attention tasks. We assessed whether multiple variables related to self-regulation (perceived mental effort) emotional states (e.g., anxiety, stress, etc.) and motivational states (e.g., boredom, engagement, etc.) may co-occur or interact with frontal attentional processing probed in two matched-samples of fourteen lower-SES and higher-SES adolescents. ERP and EEG activation were measured during a task probing selective attention to sequences of tones. Pre- and post-task salivary cortisol and self-reported emotional states were also measured. At similar behavioural performance level, the higher-SES group showed a greater ERP differentiation between attended (relevant) and unattended (irrelevant) tones than the lower-SES group. EEG power analysis revealed a cross-over interaction, specifically, lower-SES adolescents showed significantly higher theta power when ignoring rather than attending to tones, whereas, higher-SES adolescents showed the opposite pattern. Significant theta asymmetry differences were also found at midfrontal electrodes indicating left hypo-activity in lower-SES adolescents. The attended vs. unattended difference in right midfrontal theta increased with individual SES rank, and (independently from SES) with lower cortisol task reactivity and higher boredom. Results suggest lower-SES children used additional compensatory resources to monitor/control response inhibition to distracters, perceiving also more mental effort, as compared to higher-SES counterparts. Nevertheless, stress, boredom and other task-related perceived states were unrelated to SES. Ruling out presumed confounds, this study confirms the midfrontal mechanisms responsible for the SES effects on selective attention reported previously and here reflect genuine cognitive differences.
Resumo:
We examined the role of physiological regulation (heart rate, vagal tone, and salivary cortisol) in short-term memory in preterm and full-term 6-month-old infants. Using a deferred imitation task to evaluate social learning and memory recall, an experimenter modeled three novel behaviors (removing, shaking, and replacing a glove) on a puppet. Infants were tested immediately after being shown the behaviors as well as following a 10-min delay. We found that greater suppression of vagal tone was related to better memory recall in full-term infants tested immediately after the demonstration as well as in preterm infants tested later after a 10-min delay. We also found that preterm infants showed greater coordination of physiology (i.e., tighter coupling of vagal tone, heart rate, and cortisol) at rest and during retrieval than full-term infants. These findings provide new evidence of the important links between changes in autonomic activity and memory recall in infancy. They also raise the intriguing possibility that social learning, imitation behavior, and the formation of new memories are modulated by autonomic activity that is coordinated differently in preterm and full-term infants.
Resumo:
Cognitive and neurophysiological correlates of arithmetic calculation, concepts, and applications were examined in 41 adolescents, ages 12-15 years. Psychological and task-related EEG measures which correctly distinguished children who scored low vs. high (using a median split) in each arithmetic subarea were interpreted as indicative of processes involved. Calculation was related to visual-motor sequencing, spatial visualization, theta activity measured during visual-perceptual and verbal tasks at right- and left-hemisphere locations, and right-hemisphere alpha activity measured during a verbal task. Performance on arithmetic word problems was related to spatial visualization and perception, vocabulary, and right-hemisphere alpha activity measured during a verbal task. Results suggest a complex interplay of spatial and sequential operations in arithmetic performance, consistent with processing model concepts of lateralized brain function.
Resumo:
The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.
Resumo:
The purpose of this retrospective cohort study was to identify aspects of caregiving associated with health status among family caregivers in bereavement. Study participants included 151 family caregivers of terminally ill patients who had died, on average, 294 days prior to the study telephone interview. The interview covered two main areas: patient characteristics and caregiver characteristics. Multivariate linear regressions revealed that as the age of the care recipient (regression coefficient [b] = -0.32; 95% confidence interval [CI] -0.48,-0.15) and caregiver (b = -0.14; 95% CI = -0.25, -0.02) increased, caregivers experienced a decline in their physical health during bereavement. Furthermore, caregivers who reported that caregiving interrupted their usual activities (b = -5.97; 95% CI = -9.79, -2.15) had a decline in physical health during bereavement. A poorer mental health status during bereavement was seen in caregivers who reported poor physical health during caregiving (b = -4.31; 95% CI = -8.17, -0.45); and that they received insufficient family support in caregiving (b = -6.01; 95% CI = -9.75, -2.27). It was also revealed that a home death was associated with higher mental health of the caregiver (b = 3.55; 95% CI = 0.26, 6.84). The practice implications of these findings are discussed in this paper.
Resumo:
The aim of this study was to gain further insight into the role that central dopaminergic pathways play in GH neuroregulation in man. Our experimental hypothesis was based on the possibility that most of the controversies on DA role could be due to the fact that the hypothalamic somatotroph rhythm (HSR) was not taken into account when interpreting the GH responses after pharmacological manipulations on dopaminergic pathways. In 10 normal subjects we monitored the effect of central dopaminergic blockade, achieved with metoclopramide (MCP; 10 mg, i.v. Bolus), on the pattern of spontaneous GH secretion and the GH responses to a GHRH challenge (GRF , 1 µg/kg, i.v. bolus) administered together with MCP or 60 min after this drug was given. The study of HSR was made according to our previous postulate. Our results indicate that MCP administration, either prior to or together with the GHRH bolus, significantly increased GHRH-induced GH release during a refractory HSR phase; but not when the GHRH challenge took place during a spotaneous secretory phase. The strong relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks was lost when MCP was given. These data indicate that MCP was able to disrupt the intrinsic HSR by inhibiting the hypothalamic release of somatostain (SS). While a main conclusion would be that central DA is a secretagogue for SS secretion, our results also suggest that this role could be dependent on its effects on the adrenergic inputs to SS neurons.
Resumo:
In the present study, we examined the possible utility of a three-dimensional culture system using a thermo-reversible gelation polymer to isolate and expand neural stem cells (NSCs). The polymer is a synthetic biologically inert polymer and gelates at temperatures higher than the gel-sol transition point ( approximately 20 degrees C). When fetal mouse brain cells were inoculated into the gel, spherical colonies were formed ( approximately 1% in primary culture and approximately 9% in passage cultures). The spheroid-forming cells were positive for expression of the NSC markers nestin and Musashi. Under conditions facilitating spontaneous neural differentiation, the spheroid-forming cells expressed genes characteristic to astrocytes, oligodendrocytes, and neurons. The cells could be successively propagated at least to 80 poly-D-lysines over a period of 20 weeks in the gel culture with a growth rate higher than that observed in suspension culture. The spheroids formed by fetal mouse brain cells in the gel were shown to be of clonal origin. These results indicate that the spheroid culture system is a convenient and powerful tool for isolation and clonal expansion of NSCs in vitro.
Resumo:
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the 'cross activation' variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, 'bilateral access' models entail that motor engrams formed during unilateral practise, may subsequently be utilised bilaterally - that is, by the neural circuitry that constitutes the control centres for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesise and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context. © 2013 Ruddy and Carson.