927 resultados para Networks on chip (NoC)
Resumo:
In this paper, we present a first approach to evolve a cooperative behavior in ad hoc networks. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios are unfavorable to the interests of a user. In this paper we deal with the issue of user cooperation in ad hoc networks by developing the algorithm called Generous Tit-For-Tat. We assume that nodes are rational, i.e., their actions are strictly determined by self-interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we study the added behavior of the network.
Resumo:
The productive characteristics of migrating individuals, emigrant selection, affect welfare. The empirical estimation of the degree of selection suffers from a lack of complete and nationally representative data. This paper uses a new and better dataset to address both issues: the ENET (Mexican Labor Survey), which identifies emigrants right before they leave and allows a direct comparison to non-migrants. This dataset presents a relevant dichotomy: it shows on average negative selection for Mexican emigrants to the United States for the period 2000-2004 together with positive selection in Mexican emigration out of rural Mexico to the United States in the same period. Three theories that could explain this dichotomy are tested. Whereas higher skill prices in Mexico than in the US are enough to explain negative selection in urban Mexico, its combination with network effects and wealth constraints is required to account for positive selection in rural Mexico.
Resumo:
Aquest projecte es basa en l'estudi de l'oferiment de qualitat de servei en xarxes wireless i satel·litals. Per això l'estudi de les tècniques de cross-layer i del IEEE 802.11e ha sigut el punt clau per al desenvolupament teòric d’aquest estudi. Usant el simulador de xarxes network simulator, a la part de simulacions es plantegen tres situacions: l'estudi de la xarxa satel·lital, l'estudi del mètode d'accés HCCA i la interconnexió de la xarxa satel·lital amb la wireless. Encara que aquest últim punt, incomplet en aquest projecte, ha de ser la continuació per a futures investigacions.
Resumo:
Report for the scientific sojourn at the Department of Information Technology (INTEC) at the Ghent University, Belgium, from january to june 2007. All-Optical Label Swapping (AOLS) forms a key technology towards the implementation of All-Optical Packet Switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the wayin which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This project studies and proposes All-Optical Label Stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this project, an Integer Lineal Program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more.
Resumo:
Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events.
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
While much of the literature on cross section dependence has focused mainly on estimation of the regression coefficients in the underlying model, estimation and inferences on the magnitude and strength of spill-overs and interactions has been largely ignored. At the same time, such inferences are important in many applications, not least because they have structural interpretations and provide useful interpretation and structural explanation for the strength of any interactions. In this paper we propose GMM methods designed to uncover underlying (hidden) interactions in social networks and committees. Special attention is paid to the interval censored regression model. Our methods are applied to a study of committee decision making within the Bank of England’s monetary policy committee.
Resumo:
The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.
Resumo:
En aquesta memòria l'autor, fent servir un enfoc modern, redissenya i implementa la plataforma que una empresa de telecomunicacions del segle 21 necessita per poder donar serveis de telefonia i comunicacions als seus usuaris i clients. Al llarg d'aquesta exposició es condueix al lector des d'una fase inicial de disseny fins a la implementació i posada en producció del sistema final desenvolupat, centrant-nos en solucionar les necessitats actuals que això implica. Aquesta memòria cubreix el software, hardware i els processos de negoci associats al repte de fer realitat aquest objectiu, i presenta al lector les múltiples tecnologies emprades per aconseguir-ho, fent emfàsi en la convergència actual de xarxes cap al concepte de xarxes IP i basant-se en aquesta tendència i utilitzant aquesta tecnologia de veu sobre IP per donar forma a la plataforma que finalment, de forma pràctica, es posa en producció.
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Resumo:
Pond-breeding amphibians are affected by site-specific factors and regional and landscape-scale patterns of land use. Recent anthropogenic landscape modifications (drainage, agriculture intensification, larger road networks, and increased traffic) affect species by reducing the suitable habitat area and fragmenting remaining populations. Using a robust concentric approach based on permutation tests, we evaluated the impact of recent landscape changes on the presence of the endangered European tree frog (Hyla arborea.) in wetlands. We analyzed the frequency of 1 traffic and 14 land-use indices at 20 circular ranges (from 100-m up to 2-km radii) around 76 ponds identified in western Switzerland. Urban areas and road surfaces had a strong adverse effect on tree frog presence even at relatively great distances (from 100 m up to 1 km). When traffic measurements were considered instead of road surfaces, the effect increased, suggesting a negative impact due to a vehicle-induced effect. Altogether, our results indicate that urbanization and traffic must be taken into account when pond creation is an option in conservation management plans, as is the case for the European tree frog in western Switzerland. We conclude that our easy-to-use and robust concentric method of analysis can successfully assist managers in identifying potential sites for pond creation, where probability of the presence of tree frogs is maximized.
Resumo:
SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.
Resumo:
Introduction In my thesis I argue that economic policy is all about economics and politics. Consequently, analysing and understanding economic policy ideally has at least two parts. The economics part, which is centered around the expected impact of a specific policy on the real economy both in terms of efficiency and equity. The insights of this part point into which direction the fine-tuning of economic policies should go. However, fine-tuning of economic policies will be most likely subject to political constraints. That is why, in the politics part, a much better understanding can be gained by taking into account how the incentives of politicians and special interest groups as well as the role played by different institutional features affect the formation of economic policies. The first part and chapter of my thesis concentrates on the efficiency-related impact of economic policies: how does corporate income taxation in general, and corporate income tax progressivity in specific, affect the creation of new firms? Reduced progressivity and flat-rate taxes are in vogue. By 2009, 22 countries are operating flat-rate income tax systems, as do 7 US states and 14 Swiss cantons (for corporate income only). Tax reform proposals in the spirit of the "flat tax" model typically aim to reduce three parameters: the average tax burden, the progressivity of the tax schedule, and the complexity of the tax code. In joint work, Marius Brülhart and I explore the implications of changes in these three parameters on entrepreneurial activity, measured by counts of firm births in a panel of Swiss municipalities. Our results show that lower average tax rates and reduced complexity of the tax code promote firm births. Controlling for these effects, reduced progressivity inhibits firm births. Our reading of these results is that tax progressivity has an insurance effect that facilitates entrepreneurial risk taking. The positive effects of lower tax levels and reduced complexity are estimated to be significantly stronger than the negative effect of reduced progressivity. To the extent that firm births reflect desirable entrepreneurial dynamism, it is not the flattening of tax schedules that is key to successful tax reforms, but the lowering of average tax burdens and the simplification of tax codes. Flatness per se is of secondary importance and even appears to be detrimental to firm births. The second part of my thesis, which corresponds to the second and third chapter, concentrates on how economic policies are formed. By the nature of the analysis, these two chapters draw on a broader literature than the first chapter. Both economists and political scientists have done extensive research on how economic policies are formed. Thereby, researchers in both disciplines have recognised the importance of special interest groups trying to influence policy-making through various channels. In general, economists base their analysis on a formal and microeconomically founded approach, while abstracting from institutional details. In contrast, political scientists' frameworks are generally richer in terms of institutional features but lack the theoretical rigour of economists' approaches. I start from the economist's point of view. However, I try to borrow as much as possible from the findings of political science to gain a better understanding of how economic policies are formed in reality. In the second chapter, I take a theoretical approach and focus on the institutional policy framework to explore how interactions between different political institutions affect the outcome of trade policy in presence of special interest groups' lobbying. Standard political economy theory treats the government as a single institutional actor which sets tariffs by trading off social welfare against contributions from special interest groups seeking industry-specific protection from imports. However, these models lack important (institutional) features of reality. That is why, in my model, I split up the government into a legislative and executive branch which can both be lobbied by special interest groups. Furthermore, the legislative has the option to delegate its trade policy authority to the executive. I allow the executive to compensate the legislative in exchange for delegation. Despite ample anecdotal evidence, bargaining over delegation of trade policy authority has not yet been formally modelled in the literature. I show that delegation has an impact on policy formation in that it leads to lower equilibrium tariffs compared to a standard model without delegation. I also show that delegation will only take place if the lobby is not strong enough to prevent it. Furthermore, the option to delegate increases the bargaining power of the legislative at the expense of the lobbies. Therefore, the findings of this model can shed a light on why the U.S. Congress often practices delegation to the executive. In the final chapter of my thesis, my coauthor, Antonio Fidalgo, and I take a narrower approach and focus on the individual politician level of policy-making to explore how connections to private firms and networks within parliament affect individual politicians' decision-making. Theories in the spirit of the model of the second chapter show how campaign contributions from lobbies to politicians can influence economic policies. There exists an abundant empirical literature that analyses ties between firms and politicians based on campaign contributions. However, the evidence on the impact of campaign contributions is mixed, at best. In our paper, we analyse an alternative channel of influence in the shape of personal connections between politicians and firms through board membership. We identify a direct effect of board membership on individual politicians' voting behaviour and an indirect leverage effect when politicians with board connections influence non-connected peers. We assess the importance of these two effects using a vote in the Swiss parliament on a government bailout of the national airline, Swissair, in 2001, which serves as a natural experiment. We find that both the direct effect of connections to firms and the indirect leverage effect had a strong and positive impact on the probability that a politician supported the government bailout.
Resumo:
Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (Bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker - typically a client of a forensic examination or a scientist acting on behalf of a client - ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and Bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and Bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked here also serve the purpose of supporting the discussion of the similarities, differences and complementary aspects of existing Bayesian probabilistic sampling criteria and the decision-theoretic approach proposed throughout this paper.