934 resultados para Network nodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

his paper studies the problem of designing a logical topology over a wavelength-routed all-optical network (AON) physical topology, The physical topology consists of the nodes and fiber links in the network, On an AON physical topology, we can set up lightpaths between pairs of nodes, where a lightpath represents a direct optical connection without any intermediate electronics, The set of lightpaths along with the nodes constitutes the logical topology, For a given network physical topology and traffic pattern (relative traffic distribution among the source-destination pairs), our objective is to design the logical topology and the routing algorithm on that topology so as to minimize the network congestion while constraining the average delay seen by a source-destination pair and the amount of processing required at the nodes (degree of the logical topology), We will see that ignoring the delay constraints can result in fairly convoluted logical topologies with very long delays, On the other hand, in all our examples, imposing it results in a minimal increase in congestion, While the number of wavelengths required to imbed the resulting logical topology on the physical all optical topology is also a constraint in general, we find that in many cases of interest this number can be quite small, We formulate the combined logical topology design and routing problem described above (ignoring the constraint on the number of available wavelengths) as a mixed integer linear programming problem which we then solve for a number of cases of a six-node network, Since this programming problem is computationally intractable for larger networks, we split it into two subproblems: logical topology design, which is computationally hard and will probably require heuristic algorithms, and routing, which can be solved by a linear program, We then compare the performance of several heuristic topology design algorithms (that do take wavelength assignment constraints into account) against that of randomly generated topologies, as well as lower bounds derived in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a fast algorithm for data exchange in a network of processors organized as a reconfigurable tree structure. For a given data exchange table, the algorithm generates a sequence of tree configurations in which the data exchanges are to be executed. A significant feature of the algorithm is that each exchange is executed in a tree configuration in which the source and destination nodes are adjacent to each other. It has been proved in a theorem that for every pair of nodes in the reconfigurable tree structure, there always exists two and only two configurations in which these two nodes are adjacent to each other. The algorithm utilizes this fact and determines the solution so as to optimize both the number of configurations required and the time to perform the data exchanges. Analysis of the algorithm shows that it has linear time complexity, and provides a large reduction in run-time as compared to a previously proposed algorithm. This is well-confirmed from the experimental results obtained by executing a large number of randomly-generated data exchange tables. Another significant feature of the algorithm is that the bit-size of the routing information code is always two bits, irrespective of the number of nodes in the tree. This not only increases the speed of the algorithm but also results in simpler hardware inside each node.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of tetrakis(cytosine)copper(II) perchlorate dihydrate has been determined. All the hydrogen atoms were obtained from Fourier-difference synthesis. The geometry around. copper is a bicapped octahedron (4 + 2 + 2*). The adjacent cytosine rings are oriented head-to-tail with respect to each other and are roughly at right angles to the co-ordination plane. The exocyclic oxo groups form an interligand, intracomplex hydrogen-bonding network above and below the co-ordination plane with the exocyclic amino groups of alternate cytosine bases. The EPR and electronic spectra are consistent with the retention of the solid-state structure in solution. The steric effect of the C(2)=O group of cytosine is offset by the presence of the intracomplex hydrogen-bonding network. The trend in Ei values of Cu-II-Cu-I couples for 1.4 complexes of cytosine, cytodine, pyridine, 2-methylpyridine and N-methylimidazole suggests that both steric effects and pi-delocalization in imidazole and pyridine ligands and the steric effect of C(2)=O in pyrimidine ligands are important in stabilising Cu-I relative to Cu-II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligand-induced conformational changes in proteins are of immense functional relevance. It is a major challenge to elucidate the network of amino acids that are responsible for the percolation of ligand-induced conformational changes to distal regions in the protein from a global perspective. Functionally important subtle conformational changes (at the level of side-chain noncovalent interactions) upon ligand binding or as a result of environmental variations are also elusive in conventional studies such as those using root-mean-square deviations (r.m.s.d.s). In this article, the network representation of protein structures and their analyses provides an efficient tool to capture these variations (both drastic and subtle) in atomistic detail in a global milieu. A generalized graph theoretical metric, using network parameters such as cliques and/or communities, is used to determine similarities or differences between structures in a rigorous manner. The ligand-induced global rewiring in the protein structures is also quantified in terms of network parameters. Thus, a judicious use of graph theory in the context of protein structures can provide meaningful insights into global structural reorganizations upon perturbation and can also be helpful for rigorous structural comparison. Data sets for the present study include high-resolution crystal structures of serine proteases from the S1A family and are probed to quantify the ligand-induced subtle structural variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection by measuring and analyzing vibration signals in a machine component is an established procedure in mechanical and aerospace engineering. This paper presents vibration signature analysis of steel bridge structures in a nonconventional way using artificial neural networks (ANN). Multilayer perceptrons have been adopted using the back-propagation algorithm for network training. The training patterns in terms of vibration signature are generated analytically for a moving load traveling on a trussed bridge structure at a constant speed to simulate the inspection vehicle. Using the finite-element technique, the moving forces are converted into stationary time-dependent force functions in order to generate vibration signals in the structure and the same is used to train the network. The performance of the trained networks is examined for their capability to detect damage from unknown signatures taken independently at one, three, and five nodes. It has been observed that the prediction using the trained network with single-node signature measurement at a suitability chosen location is even better than that of three-node and five-node measurement data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With increased number of new services and users being added to the communication network, management of such networks becomes crucial to provide assured quality of service. Finding skilled managers is often a problem. To alleviate this problem and also to provide assistance to the available network managers, network management has to be automated. Many attempts have been made in this direction and it is a promising area of interest to researchers in both academia and industry. In this paper, a review of the management complexities in present day networks and artificial intelligence approaches to network management are presented. Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cure kinetics for the formation of copolyurethane networks of various compositions based on hydroxy-terminated polybutadiene(HTPB), poly(12-hydroxy stearic acid-co-TMP) ester polyol(PEP), and different isocyanates has been studied through viscosity build up during the cure reaction. The viscosity (N)-time (t) plots conform to the equation N = ae(bt), where a and b are empirical constants, dependent on the composition and the nature of the polyols and the isocyanates. The rate constants (b) for viscosity build up, evaluated from the slopes of dN/dt versus N plots at different temperatures, were found to vary significantly from 0.0073 to 0.25 min(-1); and the activation energies for gelation were found to be in the range 20 to 40 kJ mol(-1). The results have been interpreted in terms of the dependence of the rate constants on structural characteristics of the prepolymers. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.