956 resultados para Near miss
Resumo:
Frost flowers have been proposed to be the major source of sea-salt aerosol to the atmosphere during polar winter and a source of reactive bromine during polar springtime. However little is known about their bulk chemical composition or microstructure, two important factors that may affect their ability to produce aerosols and provide chemically reactive surfaces for exchange with the atmosphere. Therefore, we chemically analyzed 28 samples of frost flowers and parts of frost flowers collected from sea ice off of northern Alaska. Our results support the proposed mechanism for frost flower growth that suggests water vapor deposition forms an ice skeleton that wicks brine present on newly grown sea ice. We measured a high variability in sulfate enrichment factors (with respect to chloride) in frost flowers and seawater from the vicinity of freezing sea ice. The variability in sulfate indicates that mirabilite precipitation (Na2SO4 x 10 H2O) occurs during frost flower growth. Brine wicked up by frost flowers is typically sulfate depleted, in agreement with the theory that frost flowers are related to sulfate-depleted aerosol observed in Antarctica. The bromide enrichment factors we measured in frost flowers are within error of seawater composition, constraining the direct reactive losses of bromide from frost flowers. We combined the chemical composition measurements with temperature observations to create a conceptual model of possible scenarios for frost flower microstructure development.
Resumo:
Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in delta pH -0.3 (35% reduction) and delta pH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.
Resumo:
The Radarsat-1 Antarctic Mapping Project (RAMP) compiled a mosaic of Antarctica and the adjacent ocean zone from more than 3000 high-resolution Synthetic Aperture Radar (SAR) images acquired in September and October 1997. The mosaic with a pixel size of 100 m was used to determine iceberg size distributions around Antarctica, combining an automated detection with a visual control of all icebergs larger than 5 km**2 and correction of recognized false detections. For icebergs below 5 km**2 in size, the numbers of false detections and accuracies of size retrievals were analyzed for three test sites. Nearly 7000 icebergs with horizontal areas between 0.3 and 4717.7 km**2 were identified in a near-coastal zone of varying width between 20 and 300 km. The spatial distributions of icebergs around Antarctica were calculated for zonal segments of 20° angular width and related to the types of the calving fronts in the respective section. Results reveal that regional variations of the size distributions cannot be neglected. The highest ice mass accumulations were found at positions of giant icebergs (> 18.5 km) but also in front of ice shelves from which larger numbers of smaller icebergs calve almost continuously. Although the coastal oceanic zone covered by RAMP is too narrow compared to the spatial coverage needed for oceanographic research, this study nevertheless demonstrates the usefulness of SAR images for iceberg research and the need for repeated data acquisitions extending ocean-wards over distances of 500 km and more from the coast to monitor iceberg melt and disintegration and the related freshwater input into the ocean.
Resumo:
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well-known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long-term (9-16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2-fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.
Resumo:
Sea ice algae have been widely discussed as a potential food source for pelagic and benthic animals in ice-covered waters, specifically in the light of current substantial changes in the Arctic ice regime. Stomach and gut contents of the Arctic nearshore lysianassid amphipod Onisimus litoralis sampled from February to May 2003 indicate that Arctic ice algae were dominant food no earlier than the onset of ice melt. Crustaceans, common prey in a previous study, were absent in stomachs and guts during the survey period. Our data support the concept that sea ice-derived organic carbon is of specific relevance for Arctic plankton and benthos during the period of ice melt.