987 resultados para Naval Control of Shipping Organization (U.S.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The green peach aphid, Myzus persicae, is a major pest of tobacco, Nicotiana tabacum, in Yunnan province, China, where its control still depends on the use of insecticides. In recent years, the local government and farmers have sought to improve the biological control of this tobacco pest. In this paper, we present methods for mass rearing Aphidius gifuensis, a dominant endoparasitoid of M. persicae on tobacco plants in this region. The tobacco cultivar K326 (N. tabacum) was used as the host plant and M. persicae as the host insect. In the greenhouse, we collected tobacco seedlings for about 35 days (i.e., until the six-true-leaf stage), transferred them to 7.5-cm diameter pots, and kept these plants in the greenhouse for another 18 days. These pots were then transferred to an insectary-greenhouse, where the tobacco seedlings were inoculated with five to seven wingless adult M. persicae per pot. After 3 days, the infested seedlings were moved to a second greenhouse to allow the aphid population to increase, and after an additional 4 +/- 1 days when 182 +/- 4.25 aphid adults and nymphs were produced per pot, they were inoculated with A. gifuensis. With this rearing system, we were able to produce 256 +/- 8.8 aphid mummies per pot, with an emergence rate of 95.6 +/- 2.45%; 69% were females. The daily cost of parasite production (recurring costs only) was US$ 0.06 per 1000 aphid mummies. With this technique, we released 109 800 parasitoids in 1998, 196 000 in 1999, 780 000 in 2000, and 5 600 000 in 2001 during a 2-month period each year This production method is discussed with respect to countrywide usage in biological control and integrated control of M. persicae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of aphid parasitoids in China with special emphasis on their production, utilization, and conservation is presented with a brief history of Chinese biological control. Twenty genera, 99 species of Aphidiidae and two genera, 11 species of Aphelinidae were recorded in China. Each parasitoid is listed with a brief description of aphids, host plants, areas of study such as taxonomy, biology, bionomics, geographic distribution, rearing, and literature citations. Achievements, status, and problems in aphid parasitoid production, utilization, conservation, and future prospects are detailed for dominant aphid parasitoids such as Aphidius gifuensis Ashmead, A. ervi Haliday and Aphelinus mali Haldeman. Finally, opportunities and challenges of commercialization commercialization of natural enemies, especially aphid parasitoids, in China, are analyzed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A control algorithm is presented that addresses the stability issues inherent to the operation of monolithic mode-locked laser diodes. It enables a continuous pulse duration tuning without any onset of Q-switching instabilities. A demonstration of the algorithm performance is presented for two radically different laser diode geometries and continuous pulse duration tuning between 0.5 ps to 2.2 ps and 1.2 ps to 10.2 ps is achieved. With practical applications in mind, this algorithm also facilitates control over performance parameters such as output power and wavelength during pulse duration tuning. The developed algorithm enables the user to harness the operational flexibility from such a laser with 'push-button' simplicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature (∼600 °C), scalable chemical vapor deposition of high-quality, uniform monolayer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ≤0.08, and carrier mobilities of ≥3000 cm(2) V(-1) s(-1) on SiO(2) support. A kinetic growth model for graphene CVD based on flux balances is established, which is well supported by a systematic study of Ni-based polycrystalline catalysts. A finite carbon solubility of the catalyst is thereby a key advantage, as it allows the catalyst bulk to act as a mediating carbon sink while optimized graphene growth occurs by only locally saturating the catalyst surface with carbon. This also enables a route to the controlled formation of Bernal stacked bi- and few-layered graphene. The model is relevant to all catalyst materials and can readily serve as a general process rationale for optimized graphene CVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to solve the fault tolerant control problem of a wind turbine benchmark. A hierarchical controller with model predictive pre-compensators, a global model predictive controller and a supervisory controller is proposed. In the model predictive pre-compensator, an extended Kalman Filter is designed to estimate the system states and various fault parameters. Based on the estimation, a group of model predictive controllers are designed to compensate the fault effects for each component of the wind turbine. The global MPC is used to schedule the operation of the components and exploit potential system-level redundancies. Extensive simulations of various fault conditions show that the proposed controller has small transients when faults occur and uses smoother and smaller generator torque and pitch angle inputs than the default controller. This paper shows that MPC can be a good candidate for fault tolerant controllers, especially the one with an adaptive internal model combined with a parameter estimation and update mechanism, such as an extended Kalman Filter. © 2012 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New embedded predictive control applications call for more eficient ways of solving quadratic programs (QPs) in order to meet demanding real-time, power and cost requirements. A single precision QP-on-a-chip controller is proposed, implemented in afield-programmable gate array (FPGA) with an iterative linear solver at its core. A novel offline scaling procedure is introduced to aid the convergence of the reduced precision solver. The feasibility of the proposed approach is demonstrated with a real-time hardware-in-the-loop (HIL) experimental setup where an ML605 FPGA board controls a nonlinear model of a Boeing 747 aircraft running on a desktop PC through an Ethernet link. Simulations show that the quality of the closed-loop control and accuracy of individual solutions is competitive with a conventional double precision controller solving linear systems using a Riccati recursion. © 2012 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential growth of thin elastic bodies furnishes a surprisingly simple explanation of the complex and intriguing shapes of many biological systems, such as plant leaves and organs. Similarly, inelastic strains induced by thermal effects or active materials in layered plates are extensively used to control the curvature of thin engineering structures. Such behaviour inspires us to distinguish and to compare two possible modes of differential growth not normally compared to each other, in order to reveal the full range of out-of-plane shapes of an initially flat disk. The first growth mode, frequently employed by engineers, is characterised by direct bending strains through the thickness, and the second mode, mainly apparent in biological systems, is driven by extensional strains of the middle surface. When each mode is considered separately, it is shown that buckling is common to both modes, leading to bistable shapes: growth from bending strains results in a double-curvature limit at buckling, followed by almost developable deformation in which the Gaussian curvature at buckling is conserved; during extensional growth, out-of-plane distortions occur only when the buckling condition is reached, and the Gaussian curvature continues to increase. When both growth modes are present, it is shown that, generally, larger displacements are obtained under in-plane growth when the disk is relatively thick and growth strains are small, and vice versa. It is also shown that shapes can be mono-, bi-, tri- or neutrally stable, depending on the growth strain levels and the material properties: furthermore, it is shown that certain combinations of growth modes result in a free, or natural, response in which the doubly curved shape of disk exactly matches the imposed strains. Such diverse behaviour, in general, may help to realise more effective actuation schemes for engineering structures. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Work presented in this paper studies the potential of employing inerters -a novel mechanical device used successfully in racing cars- in active suspension configurations with the aim to enhance railway vehicle system performance. The particular element of research in this paper concerns railway wheelset lateral stability control. Controlled torques are applied to the wheelsets using the concept of absolute stiffness. The effects of a reduced set of arbitrary passive structures using springs, dampers and inerters integrated to the active solution are discussed. A multi-objective optimisation problem is defined for tuning the parameters of the proposed configurations. Finally, time domain simulations are assessed for the railway vehicle while negotiating a curved track. A simplification of the design problem for stability is attained with the integration of inerters to the active solutions. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb 0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model. © 2012 American Physical Society.