970 resultados para Natural experiments
Resumo:
Stability analysis of residual soil slopes are now increasingly being performed with the incorporation of the matric suction component of strength. The matric suction (u(a)-u(w)) component of shear strength is known as apparent cohesion. The relation between matric suction and apparent cohesion (c(app)) may be linear or non-linear. The impact of type of apparent strength versus matric suction relationship on the stability of an unsaturated residual soil slope is examined in this study. Results of the study showed that the factor of safety values were unaffected by the nature of the strength versus matric suction relationship for the residual soil slope examined. This was so as contribution from the effective stress- strength component to the factor of safety predominated over the contribution made by the apparent strength component.
Resumo:
Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.
Resumo:
The effect of natural convection on the oscillatory flow in an open-ended pipe driven by a timewise sinusoidally varying pressure at one end and subjected to an ambient-to-cryogenic temperature difference across the ends, is numerically studied. Conjugate effects arising out of the interaction of oscillatory flow with heat conduction in the pipe wall are taken into account by considering a finite thickness wall with an insulated exterior surface. Two cases, namely, one with natural convection acting downwards and the other, with natural convection acting upwards, are considered. The full set of compressible flow equations with axissymmetry are solved using a pressure correction algorithm. Parametric studies are conducted with frequencies in the range 5-15 Hz for an end-to-end temperature difference of 200 and 50 K. Results are obtained for the variation of velocity, temperature. Nusselt number and the phase relationship between mass flow rate and temperature. It is found that the Rayleigh number has a minimal effect on the time averaged Nusselt number and phase angle. However, it does influence the local variation of velocity and Nusselt number over one cycle. The natural convection and pressure amplitude have influence on the energy flow through the gas and solid. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In species-rich assemblages, differential utilization of vertical space can be driven by resource availability. For animals that communicate acoustically over long distances under habitat-induced constraints, access to an effective transmission channel is a valuable resource. The acoustic adaptation hypothesis suggests that habitat acoustics imposes a selective pressure that drives the evolution of both signal structure and choice of calling sites by signalers. This predicts that species-specific signals transmit best in native habitats. In this study, we have tested the hypothesis that vertical stratification of calling heights of acoustically communicating species is driven by acoustic adaptation. This was tested in an assemblage of 12 coexisting species of crickets and katydids in a tropical wet evergreen forest. We carried out transmission experiments using natural calls at different heights from the forest floor to the canopy. We measured signal degradation using 3 different measures: total attenuation, signal-to-noise ratio (SNR), and envelope distortion. Different sets of species supported the hypothesis depending on which attribute of signal degradation was examined. The hypothesis was upheld by 5 species for attenuation and by 3 species each for SNR and envelope distortion. Only 1 species of 12 provided support for the hypothesis by all 3 measures of signal degradation. The results thus provided no overall support for acoustic adaptation as a driver of vertical stratification of coexisting cricket and katydid species.
Resumo:
In this Letter, we examine magnetization in double- and zero-quantum reservoirs of an ensemble of spin-1/2 nuclei and describe their role in determining the sensitivity of a class of separated local field NMR experiments based on Hartmann-Hahn cross-polarization. We observe that for the liquid crystal system studied, a large dilute spin-polarization, obtained initially by the use of adiabatic cross-polarization, can enhance the sensitivity of the above experiment. The signal enhancement factors, however, are found to vary and depend on the local dynamics. The experimental results have been utilized to obtain the local order-parameters of the system. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
This study presents development of a computational fluid dynamic (CFD) model to predict unsteady, two-dimensional temperature, moisture and velocity distributions inside a novel, biomass-fired, natural convection-type agricultural dryer. Results show that in initial stages of drying, when material surface is wet and moisture is easily available, moisture removal rate from surface depends upon the condition of drying air. Subsequently, material surface becomes dry and moisture removal rate is driven by diffusion of moisture from inside to the material surface. An optimum 9-tray configuration is found to be more efficient than for the same mass of material and volume of dryer. A new configuration of dryer, mainly to explore its potential to increasing uniformity in drying across all trays, is also analyzed. This configuration involves diverting a portion of hot air before it enters over the first tray and is supplied directly at an intermediate location in the dryer. Uniformity in drying across trays has increased for the kind of material simulated.
Resumo:
This article addresses the adaptation of a low-power natural gas engine for using producer gas as a fuel. The 5.9 L natural gas engine with a compression ratio of 10.5:1, rated at 55 kW shaft power, delivered 30 kW using producer gas as fuel in the naturally aspirated mode. Optimal ignition timing for peak power was found to be 20 degrees before top dead centre. Air-to-fuel ratio (A/F) was found to be 1.2 +/- 0.1 over a range of loads. Critical evaluation of the energy flows in the engine resulted in identifying losses and optimizing the engine cooling. The specific fuel consumption was found to be 1.2 +/- 0.1 kg of biomass per kilowatt hour. A reduction of 40 per cent in brake mean effective pressure was observed compared with natural gas operation. Governor response to load variations has been studied with respect to frequency recovery time. The study also attempts to adopt a turbocharger for higher power output. Preliminary results suggest a possibility of about 30 per cent increase in the output.
Resumo:
In the tree cricket Oecanthus henryi, females are attracted by male calls and can choose between males. To make a case for female choice based on male calls, it is necessary to examine male call variation in the field and identify repeatable call features that are reliable indicators of male size or symmetry. Female preference for these reliable call features and the underlying assumption behind this choice, female preference for larger males, also need to be examined. We found that females did prefer larger males during mating, as revealed by the longer mating durations and longer spermatophore retention times. We then examined the correlation between acoustic and morphological features and the repeatability of male calls in the field across two temporal scales, within and across nights. We found that carrier frequency was a reliable indicator of male size, with larger males calling at lower frequencies at a given temperature. Simultaneous playback of male calls differing in frequency, spanning the entire range of natural variation at a given temperature, revealed a lack of female preference for low carrier frequencies. The contrasting results between the phonotaxis and mating experiments may be because females are incapable of discriminating small differences in frequency or because the change in call carrier frequency with temperature renders this cue unreliable in tree crickets. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Over the past two decades, many ingenious efforts have been made in protein remote homology detection. Because homologous proteins often diversify extensively in sequence, it is challenging to demonstrate such relatedness through entirely sequence-driven searches. Here, we describe a computational method for the generation of `protein-like' sequences that serves to bridge gaps in protein sequence space. Sequence profile information, as embodied in a position-specific scoring matrix of multiply aligned sequences of bona fide family members, serves as the starting point in this algorithm. The observed amino acid propensity and the selection of a random number dictate the selection of a residue for each position in the sequence. In a systematic manner, and by applying a `roulette-wheel' selection approach at each position, we generate parent family-like sequences and thus facilitate an enlargement of sequence space around the family. When generated for a large number of families, we demonstrate that they expand the utility of natural intermediately related sequences in linking distant proteins. In 91% of the assessed examples, inclusion of designed sequences improved fold coverage by 5-10% over searches made in their absence. Furthermore, with several examples from proteins adopting folds such as TIM, globin, lipocalin and others, we demonstrate that the success of including designed sequences in a database positively sensitized methods such as PSI-BLAST and Cascade PSI-BLAST and is a promising opportunity for enormously improved remote homology recognition using sequence information alone.
Resumo:
Three-dimensional numerical study of natural convection in a vertical channel with flush-mounted discrete heaters on opposite conductive substrate walls is carried out in the present work. Detailed flow and heat transfer characteristics are presented for various Grashof numbers. The heat transfer effects on one wall by the presence of heaters on its opposite wall is examined. It is found that heat transfer rates on one wall are increased by the presence of heaters on its opposite wall. The thermal boundary layers on the opposite walls complement each other for enhanced heat transfer. The effects of spacing between the heated walls, spacings between heaters and substrate conductivity on flow and heat transfer are examined. Existence of optimum spacings between the heated walls for maximum heat transfer and mass flow are observed. It is found that the heat transfer and fluid flow do not follow the same optimum spacings. Mass flow rate reaches maximum value at a wall spacing greater than the spacing for maximum heat transfer. This is because the interaction of thermal boundary layers on individual walls ceases at a lower spacing before the velocity boundary layers separate each other. It is found that increased spacings between heaters reduce individual heater temperatures provided the heaters close to exit on both substrates avail sufficient substrate potions on the exit side. Insufficient substrate portions between the exit heaters and the exit cause abnormal local temperature rise in the exit heaters which are the hottest ones among all the heaters. Optimal heater spacings exist for minimum hottest heater temperature rise. Correlations are presented for dimensionless mass flow rate, temperature maximum, and average Nusselt number.
Resumo:
A concise approach of general utility toward mono- and di-geranylated PPAP frameworks employing `reconstructive aldol cyclization' as the key step is delineated. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Stereo- and enantioselective syntheses of (+)-harveynone and (-)-asperpentyn are reported. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A concise stereo- and enantioselective approach to seco-prezizaane sesquiterpenoids, leading to the acquisition of two bicyclic fragments, is delineated. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Laminar natural convection between two coaxial vertical rectangular cylinders is numerically studied in this work. The outer cylinder is connected with vertical rectangular inlet and outlet pipes. The inner cylinder dissipates volumetric heat. The fluid flow and heat transfer characteristics between the cylinders are analyzed in detail for various Grashof numbers. The heat transfer rates on the individual faces of the inner cylinder are reported. The bottom face of the inner cylinder is found to associate with much higher heat rates than those of the other faces. The average Nusselt number on bottom face is more than 2.5 times of the Nusselt number averaged on all the faces. At a given elevation, local Nusselt number on the inner cylinder faces increases towards cylinder edges. The effect of thermal condition of the walls of outer cylinder, inlet and outlet on the natural convection is analyzed. The thermal condition shows strong qualitative and quantitative impact on the fluid flow and heat transfer. The variation of induced flow rate, dimensionless maximum temperature and average Nusselt numbers with Grashof number is studied. Correlations for dimensionless buoyancy-induced mass flow rate and temperature maximum are presented. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate the phase fluctuation introduced by oscillation of scattering centers in the focal volume of an ultrasound transducer in an optical tomography experiment has a nonzero mean. The conditions to be met for the above are: (i) the frequency of the ultrasound should be in the vicinity of the most dominant natural frequency of vibration of the ultrasound focal volume, (ii) the corresponding acoustic wavelength should be much larger than l(n)*, a modified transport mean-free-path applicable for phase decorrelation and (iii) the focal volume of the ultrasound transducer should not be larger than 4 - 5 times (l(n)*)(3). We demonstrate through simulations that as the ratio of the ultrasound focal volume to (l(n)*)(3) increases, the average of the phase fluctuation decreases and becomes zero when the focal volume becomes greater than around 4(l(n)*)(3); and through simulations and experiments that as the acoustic frequency increases from 100 Hz to 1 MHz, the average phase decreases to zero. Through experiments done in chicken breast we show that the average phase increases from around 110 degrees to 130 degrees when the background medium is changed from water to glycerol, indicating that the average of the phase fluctuation can be used to sense changes in refractive index deep within tissue.