935 resultados para Nacl
Resumo:
Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C-3-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem 11 level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4M NaCl salinity or high irradiance of 1000 mu mol m(-2) s(-1), as well as to both stress factors combined (LLSA = low light plus salt; HLCO = high light of 1000 mu mol m(-2)s(-1), no salt; HLSA = high light plus salt). A control of LLCO = low light of 200 mu mol m(-2) s(-1), no salt was used. Parameters of chlorophyll a fluorescence of photosystem 11 (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Delta malate) of similar to 12 mM in the course of the experiment, while HLSA induced stronger CAM of Delta malate similar to 20mM. Effective quantum yield of PSII, Delta F/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F-v/F-m, at predawn times was not affected by any of the conditions, always remaining at >= 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (< 0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETRmax, declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that A crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and tight irradiance stress combined. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 mu g/200 eta 1) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT2a/HT2c receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI;1 or 5 mu g/200 eta 1) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 mu g) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 mu g) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.
Resumo:
Recent studies have shown the existence of two important inhibitory mechanisms for the control of NaCl and water intake: one mechanism involves serotonin in the lateral parabrachial nucleus (LPBN) and the other depends on alpha(2)-adrenergic/imidazoline receptors probably in the forebrain areas. In the present study we investigated if alpha(2)-adrenergic/imidazoline and serotonergic inhibitory mechanisms interact to control NaCl and water intake. Male Holtzman rats with cannulas implanted simultaneously into the lateral ventricle (LV) and bilaterally into the LPBN were used. The ingestion of 0.3 M NaCl and water was induced by treatment with the diuretic furosemide (10 mg/kg of body weight)+the angiotensin converting enzyme inhibitor captopril (5 mg/kg) injected subcutaneously 1 h before the access of rats to water and 0.3 M NaCl. Intracerebroventricular (i.c.v.) injection of the alpha(1)-adrenergic/imidazoline agonist clonidine (20 nmol/l RI) almost abolished water (1.6 +/- 1.2, vs. vehicle: 7.5 +/- 2.2 ml/2 h) and 0.3 M NaCl intake (0.5 +/- 0.3, vs. vehicle: 2.2 0.8 ml/2 h). Similar effects were produced by bilateral injections of the 5HT(2a/2b) serotonergic agonist 2,5-dimetoxy-4-iodoamphetamine (DOI, 5 mug/0.2 mul each site) into the LPBN on water (3.6 +/- 0.9 ml/2 h) and 0.3 M NaCl intake (0.4 +/- 0.2 m1/2 h). Injection of the (alpha(2)-adrenergic/imidazoline antagonist idazoxan (320 nmol) i.c.v. completely blocked the effects of clonidine on water (8.4 +/- 1.5 ml/2 h) and NaCl intake (4.0 +/- 1.2 ml/2 h), but did not change the effects of LPBN injections of DOI on water (4.2 +/- 1.0 ml/2 h) and NaCl intake (0.7 +/- 0.2 ml/2 h). Bilateral injections of methysergide (4 mug/0.2 mul each site) into the LPBN increased 0.3 M NaCl intake (6.4 +/- 1.9 ml/2 h), not water intake. The inhibitory effect of i.c.v. clonidine on water and 0.3 M NaCl was still present after injections of methysergide into the LPBN (1.5 +/- 0.8 and 1.7 +/- 1.4 ml/2 h, respectively). The results show that the inhibitory effects of the activation of a,-adrenergic/imidazoline receptors in the forebrain are still present after blockade of the LPBN serotonergic mechanisms and vice versa for the activation of serotonergic mechanisms of the LPBN. Therefore, each system may act independently to inhibit NaCl and water intake. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Water and 3% NaCl intake were increased by the injection of 4 ng angiotensin II (ANG II) into the anteroventral third ventricle (AV3V) region of rats. Pretreatment with two specific ANG II receptor antagonists, [octanoyl-Leu8]ANG II and [Leu8]ANG II, significantly reduced ANG II-induced water and saline intake. This inhibition lasted approximately 30 min, with partial recovery at 60 min. In rats with electrolytic lesion of the bilateral ventromedial nucleus of hypothalamus (VMH), the effect of ANG II on water intake was not different from that observed in sham rats, but saline ingestion increased. In summary, the present results show that the AV3V region is an important central structure for ANG II-induced saline ingestion. Lesion of the VMH increases the response to ANG II, showing an interaction between the AV3V region and the VMH in the regulation of salt ingestion.
Resumo:
Shikimate dehydrogenase (SDH, EC 1.1.1.25) extracted from cucumber pulp (Cucumis sativus L.) was purified 7-fold by precipitation with ammonium sulfate and elution from columns of Sephadex G-25, DEAE-cellulose, and hydroxyapatite. Two activity bands were detected on polyacrylamide gel electrophoresis at the last purification step. pH optimum was 8.7, and molecular weight of 45 000 was estimated on a Sephadex G-100 column. SDH was inhibited competitively by protocatechuic acid with a K(i) value of 2 x 10-4 M. K(m) values of 6 x 10-5 and 1 x 10-5 M were determined for shikimic acid and NADP+, respectively. The enzyme was completely inhibited by HgCl2 and p-(chloromercuri)benzoate (PCMB). NaCl and KCl showed partial protection against inhibition by PCMB. Heat inactivation between 50 and 55-degrees-C was biphasic, and the enzyme was completely inactivated after 10 min at 60-degrees-C. Incubation of SDH with either NADP+ or shikimic acid protected the enzyme against heat inactivation.
Resumo:
This study investigated the effects of bilateral injections of serotonergic receptor agonist and antagonist into the lateral parabrachial nucleus (LPBN) on the ingestion of water and 0.3 M NaCl induced by intracerebroventricular angiotensin II (ANG II) or by combined subcutaneous injections of the diuretic furosemide (Furo) and the angiotensin-converting enzyme inhibitor captopril (Cap). Rats had stainless steel cannulas implanted bilaterally into the LPBN and into the left lateral ventricle. Bilateral LPBN pretreatment with the serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl each site) increased 0.3 M NaCl and water intakes induced by intracerebroventricular ANG II (50 ng/mu l) and 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with bilateral LPBN injections of a serotonergic 5-HT2A/2C receptor agonist DOI (5 mu g/200 nl) significantly reduced 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with methysergide or DOI into the LPBN produced no significant changes in the water intake induced by subcutaneous Furo + Cap. These results suggest that serotonergic mechanisms associated with the LPBN may have inhibitory roles in water and sodium ingestion in rats.
Resumo:
The alpha(2)-adrenergic agonist clonidine and the neuropeptide oxytocin, inhibit sodium intake when injected intracerebroventricularly (i.c.v.). The present work investigates whether (1) vasopressin also inhibits sodium intake when injected i.c.v., and (2) the effect of oxytocin and of vasopressin on sodium intake is affected by i.c.v. injection of idazoxan, an alpha(2)-adrenergic antagonist. Clonidine (30 nmol), oxytocin (40, 80 nmol) and vasopressin (40, 80 nmol) were injected i.c.v. 20 min prior to a 1.5% NaCl appetite test, in rats depleted of sodium for 24 h by a combination of a single s.c. injection of furosemide (10 mg/rat) and removal of ambient sodium. Every dose of clonidine, oxytocin and vasopressin inhibited the 1.5% NaCl intake. Seizures were observed with the higher dose of vasopressin, but not with either dose of oxytocin. The effect of i.c.v. injection of clonidine (30 nmol), oxytocin (80 nmol) or vasopressin (40 nmol) was partially inhibited by prior i.c.v. injection of idazoxan (160, 320 nmol). The results suggest that the inhibition of 1.5% NaCl intake induced by i.c.v. injection of neuropeptides in sodium-depleted rats depends, in part, on the activation of central alpha(2)-adrenoceptors. (C) 1997 Elsevier B.V. B.V. All rights reserved.
Resumo:
Central cholinergic mechanisms are suggested to participate in osmoreceptor-induced water intake. Therefore, central injections of the cholinergic agonist carbachol usually produce water intake (i.e., thirst) and are ineffective in inducing the intake of hypertonic saline solutions (i.e., the operational definition of sodium appetite). Recent studies have indicated that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nucleus (LPBN) markedly increases salt intake in models involving the activation of the renin-angiotensin system or mineralocorticoid hormones. The present studies investigated whether sodium appetite could be induced by central cholinergic activation with carbachol (an experimental condition where only water is typically ingested) after the blockade of LPBN serotonergic mechanisms with methysergide treatment in rats. When administered intracerebroventricularly in combination with injections of vehicle into both LPBN, carbachol (4 nmol) caused water drinking but insignificant intake of hypertonic saline. In contrast, after bilateral LPBN injections of methysergide (4 mug), intracerebroventricular carbachol induced the intake of 0.3 M NaCl. Water intake stimulated by intracerebroventricular carbachol was not changed by LPBN methysergide injections. The results indicate that central cholinergic activation can induce marked intake of hypertonic NaCl if the inhibitory serotonergic mechanisms of the LPBN are attenuated.
Resumo:
Siloxane-polypropyleneoxide (PPO) hybrids doped with sodium perchlorate (NaClO4) obtained by the sol-gel process were prepared with two PPO molecular weights (2000 and 4000 g/mol) and two sodium concentrations such as [O]/[Na] = 4 and 15 (O being the ether-type oxygen of PPO chains). The structure of these hybrids was investigated by Na-23 nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy at the sodium K-edge (1071.8 eV) whereas complex impedance spectroscopy was used to determine their ionic conductivity. Three sodium sites were determined by NMR. The conjunction of NMR and X-ray absorption results allows us to identify one site in which Na is in a NaCl structure, a second one in which Na is in contact with perchlorate anions. The third site is attributed to mobile sodium species in interaction with the polymeric chain. The relative proportion of the different sites in the materials determines the ionic conductivity of the materials at room temperature: the largest ionic conductivity is 8.9 x 10(-6) Omega(-1) cm(-1) and is observed on the material with the larger amount (at least 85%) of sites in which sodium interacts with the polymer. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We determined the effects of DuP753 and PD123319 (both nonpeptides and selective antagonists of the AT(1) and AT(2) angiotensin receptors, respectively), and [Sar(1), Ala(8)]ANG II (a non-selective peptide antagonist of angiotensin receptors) on water and 3%NaCl intake induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of sodium-depleted Holtzman rats weighing 250-300 g. Twenty hours before the experiments, the rats were depleted of sodium using furosemide (10 ng/rat, sc). The volume of drug solution injected was 0.5 mu l over a period of 10-15 sec. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2.0 h. Pre-treatment with DuP753 (14 rats) at a dose of 60 ng completely abolished the water intake induced by injection of 12 ng of ANG II (15 rats) (6.4 +/- 0.6 vs 1.4 +/- 0.3 ml/2 h), where [Sar(1), Ala(8)]ANG II (12 rats) and PD123319 (10 rats) at the doses of 60 ng partially blocked water intake (6.4 +/- 0.6 vs 2.9 +/- 0.5 and 2.7 +/- 0.2 ml/2 h, respectively). In the same animals, [Sar(1), Ala(8)]ANG II, DuP753, and PD123319 blocked the sodium intake induced by ANG II (9.2 +/- 1.6 vs 3.3 +/- 0.6, 1.8 +/- 0.3, and 1.4 +/- 0.2 ml/2 h, respectively). These results indicate that both DuP753 and PD123319, administered into the PVN, blocked the water and sodium intake induced by administration of ANG II into the same site.
Resumo:
Clonidine, an alpha 2-adrenergic agonist, injected into the brain inhibits salt intake of animals treated by the diuretic model of sodium depletion. In the present study, we address the question of whether central injection of clonidine also inhibits salt intake in animals deprived of water or in the need-free state. Saline or clonidine (30 nmol) was injected into the anterior third ventricle of 24-h sodium-depleted (furosemide + removal of ambient sodium), of 24-h water-deprived and of normovolemic (need-free state) adult male rats, Clonidine injected intracerebroventricularly (icv) inhibited the 1.5% NaCl intake for 120 min by 50 to 90% in every model tested. Therefore, different models of salt intake are inhibited by icv injection of clonidine, Idazoxan, an alpha 2-adrenergic antagonist, injected icy at a dose of 160 nmol, inhibited the effect of clonidine only in the furosemide + removal of ambient sodium model of salt intake. This indicates that the antagonism of this effect by idazoxan is dependent on the body fluid/sodium status of the animal.
Resumo:
The effect of intraperitoneal injection of clonidine (9-72 mu g/kg) on need-free 1.5% NaCl intake and on performance (defined as percent of a complete trial) in the rotarod test, was studied in normovolemic adult male rats. Clonidine (18 and 36 mu g/kg) inhibited the 1.5% NaCl intake in a 2-h test at doses that did not alter the performance in the rotarod test. The dose of 36 mu g/kg did not inhibit 10% sucrose intake. Only the highest dose (72 mu g/kg) of clonidine inhibited the 1.5% NaCl intake and the performance in the rotarod test, and produced signs of sedation. Sedation was determined either by change in posture (immobility or lack of postural tonus) of the animals during the ingestive test or by their performance in the rotarod test. The results suggest that sedation is not a determinant effect on the inhibition of 1.5% NaCl intake induced by clonidine. (C) 1999 Elsevier B.V.
Resumo:
We tested the effects of estradiol, progesterone and testosterone on water and salt intake induced by angiotensin II (ANG II) injected into the third ventricle of female Holtzman rats weighing 250-300 g. The water and salt ingestion observed after 120 min in the control experiments (injection of 0.5 mu l of 0.15 M NaCl into the third ventricle) was 1.6 +/- 0.3 ml (N = 10) and 0.3 +/- 0.1 ml (N = 8) in intact rats, respectively, and 1.4 +/- 0.3 ml (N = 10) and 0.2 +/- 0.1 (N = 8) in ovariectomized rats, respectively. ANG II injected in intact rats (4, 6, 12, 25, and 50 ng, icv, in 0.5 mu l saline) induced an increase in water intake (4.3 +/- 0.6, 5.4 +/- 0.7. 7.8 +/- 0.8, 10.4 +/- 1.2, 11.2 +/- 1.4 ml/120 min, respectively) (N = 43). The same doses of icv ANG II in intact rats increased the 3% NaCl intake (0.9 +/- 0.2; 1.4 +/- 0.3, 2.3 +/- 0.4, 2.2 +/- 0.3. and 2.5 +/- 0.4 ml/120 min, respectively) (N = 42). When administered to ovariectomized rats ANG II induced comparable amounts of water intake (4.0 +/- 0.5, 4.8 +/- 0.6, 6.9 +/- 0.7. 9.6 +/- 0.8, and 10.9 +/- 1.2 ml/120 min, respectively) (N = 43) but there was a significant decrease of 3% NaCl solution ingestion (0.3 +/- 0.1, 0.4 +/- 0.1, 0.8 +/- 0.2, 0.7 +/- 0.2, and 0.6 +/- 0.2 ml/120 min, respectively) (N = 44). Estrogen (50 mu g), progesterone (25 ng), and testosterone (300 mu g) were injected daily into ovariectomized rats for 21 days. Treatment with estrogen decreased the water intake and abolished the saline ingestion induced by icy injection of ANG II (12 ng (2.8 +/- 1.2 and 0.3 +/- 0.1 ml/120 min, respectively) (N = 8). Treatment with progesterone also reduced the water intake (3.3 +/- 0.6 ml/120 min) (N = 8) and abolished the ANG II-induced saline ingestion (0.4 +/- 0.1 ml/120 min) (N = 8), but these effects were not observed with testosterone (6.4 +/- 0.8 and 2.2 +/- 0.3 ml/120 min, respectively) (N = 8). These results indicate that ANG II induces a greater increase in sodium intake in intact female rats than in ovariectomized rats and that estrogen and progesterone impair water and sodium intake in ovariectomized rats.
Resumo:
The apparent diffusion coefficients for sucrose, NaCl and water during osmotic dehydration of tomatoes in ternary solutions were determined. Long time experiments (up to 60 h) were carried out in order to determine equilibrium concentrations inside tomatoes, whereas short time experiments (up to 4 h) were performed to provide detailed information on kinetics of water loss and solids gain at the beginning of osmotic treatment. The mass transfer rates for water and solutes showed to be dependent of NaCl and sucrose concentrations in osmotic solution and simple regression models as functions of solutes concentration were determined for diffusion coefficients. Salt and sucrose diffusivities showed to be interdependent, with increasing NaCl concentration causing the enhancement of water loss, at the same time that higher sucrose contents hindered the excessive salt penetration. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The effect of intravenous infusion of hypertonic saline (HS, 7.5% NaCl) on the recovery of mean arteria pressure (MAP) after hemorrhage was studied in sham-operated rats and in rats with electrolytic lesion of the anteroventral third ventricle (AV3V) region (4 h, 4 and 20 days). Rats anesthetized with thiopental sodium were bled (about 2.8 ml/100 g) until the MAP was stabilized at the level of 60 mmHg for 30 min. In sham-lesioned rats, MAP increased to 90 mmHg and became stable near this level after intravenous infusion of 7.5% NaCl (4 ml/kg b.wt.). In AV3V-lesioned rats, the same infusion induced a smaller increase in MAP (80 mmHg) and the MAP returned to pre-infusion levels within 30 min. These results show that the AV3V region plays an important role in the recovery of arterial pressure induced by hypertonic saline in rats submitted to hemorrhagic shock.