987 resultados para NEUMANN-STREBEL INVARIANT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous work has demonstrated that observed and modeled climates show a near-time-invariant ratio of mean land to mean ocean surface temperature change under transient and equilibrium global warming. This study confirms this in a range of atmospheric models coupled to perturbed sea surface temperatures (SSTs), slab (thermodynamics only) oceans, and a fully coupled ocean. Away from equilibrium, it is found that the atmospheric processes that maintain the ratio cause a land-to-ocean heat transport anomaly that can be approximated using a two-box energy balance model. When climate is forced by increasing atmospheric CO2 concentration, the heat transport anomaly moves heat from land to ocean, constraining the land to warm in step with the ocean surface, despite the small heat capacity of the land. The heat transport anomaly is strongly related to the top-of-atmosphere radiative flux imbalance, and hence it tends to a small value as equilibrium is approached. In contrast, when climate is forced by prescribing changes in SSTs, the heat transport anomaly replaces ‘‘missing’’ radiative forcing over land by moving heat from ocean to land, warming the land surface. The heat transport anomaly remains substantial in steady state. These results are consistent with earlier studies that found that both land and ocean surface temperature changes may be approximated as local responses to global mean radiative forcing. The modeled heat transport anomaly has large impacts on surface heat fluxes but small impacts on precipitation, circulation, and cloud radiative forcing compared with the impacts of surface temperature change. No substantial nonlinearities are found in these atmospheric variables when the effects of forcing and surface temperature change are added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we derive novel approximations to trapped waves in a two-dimensional acoustic waveguide whose walls vary slowly along the guide, and at which either Dirichlet (sound-soft) or Neumann (sound-hard) conditions are imposed. The guide contains a single smoothly bulging region of arbitrary amplitude, but is otherwise straight, and the modes are trapped within this localised increase in width. Using a similar approach to that in Rienstra (2003), a WKBJ-type expansion yields an approximate expression for the modes which can be present, which display either propagating or evanescent behaviour; matched asymptotic expansions are then used to derive connection formulae which bridge the gap across the cut-off between propagating and evanescent solutions in a tapering waveguide. A uniform expansion is then determined, and it is shown that appropriate zeros of this expansion correspond to trapped mode wavenumbers; the trapped modes themselves are then approximated by the uniform expansion. Numerical results determined via a standard iterative method are then compared to results of the full linear problem calculated using a spectral method, and the two are shown to be in excellent agreement, even when $\epsilon$, the parameter characterising the slow variations of the guide’s walls, is relatively large.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study uses a bootstrap methodology to explicitly distinguish between skill and luck for 80 Real Estate Investment Trust Mutual Funds in the period January 1995 to May 2008. The methodology successfully captures non-normality in the idiosyncratic risk of the funds. Using unconditional, beta conditional and alpha-beta conditional estimation models, the results indicate that all but one fund demonstrates poor skill. Tests of robustness show that this finding is largely invariant to REIT market conditions and maturity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some necessary and sufficient conditions for closed-loop eigenstructure assignment by output feedback in time-invariant linear multivariable control systems are presented. A simple condition on a square matrix necessary and sufficient for it to be the closed-loop plant matrix of a given system with some output feedback is the basis of the paper. Some known results on entire eigenstructure assignment are deduced from this. The concept of an inner inverse of a matrix is employed to obtain a condition concerning the assignment of an eigenstructure consisting of the eigenvalues and a mixture of left and right eigenvectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of robust pole assignment by feedback in a linear, multivariable, time-invariant system which is subject to structured perturbations is investigated. A measure of robustness, or sensitivity, of the poles to a given class of perturbations is derived, and a reliable and efficient computational algorithm is presented for constructing a feedback which assigns the prescribed poles and optimizes the robustness measure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models which define fitness in terms of per capita rate of increase of phenotypes are used to analyse patterns of individual growth. It is shown that sigmoid growth curves are an optimal strategy (i.e. maximize fitness) if (Assumption 1a) mortality decreases with body size; (2a) mortality is a convex function of specific growth rate, viewed from above; (3) there is a constraint on growth rate, which is attained in the first phase of growth. If the constraint is not attained then size should increase at a progressively reducing rate. These predictions are biologically plausible. Catch-up growth, for retarded individuals, is generally not an optimal strategy though in special cases (e.g. seasonal breeding) it might be. Growth may be advantageous after first breeding if birth rate is a convex function of G (the fraction of production devoted to growth) viewed from above (Assumption 5a), or if mortality rate is a convex function of G, viewed from above (Assumption 6c). If assumptions 5a and 6c are both false, growth should cease at the age of first reproduction. These predictions could be used to evaluate the incidence of indeterminate versus determinate growth in the animal kingdom though the data currently available do not allow quantitative tests. In animals with invariant adult size a method is given which allows one to calculate whether an increase in body size is favoured given that fecundity and developmental time are thereby increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alice Crary has recently developed a radical reading of J. L. Austin's philosophy of language. The central contention of Crary's reading is that Austin gives convincing reasons to reject the idea that sentences have context-invariant literal meaning. While I am in sympathy with Crary about the continuing importance of Austin's work, and I think Crary's reading is deep and interesting, I do not think literal sentence meaning is one of Austin's targets, and the arguments that Crary attributes to Austin or finds Austinian in spirit do not provide convincing reasons to reject literal sentence meaning. In this paper, I challenge Crary's reading of Austin and defend the idea of literal sentence meaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.