917 resultados para NETWORK ANALYSIS
Resumo:
Stakeholder analysis plays a critical role in business analysis. However, the majority of the stakeholder identification and analysis methods focus on the activities and processes and ignore the artefacts being processed by human beings. By focusing on the outputs of the organisation, an artefact-centric view helps create a network of artefacts, and a component-based structure of the organisation and its supply chain participants. Since the relationship is based on the components, i.e. after the stakeholders are identified, the interdependency between stakeholders and the focal organisation can be measured. Each stakeholder is associated with two types of dependency, namely the stakeholder’s dependency on the focal organisation and the focal organisation’s dependency on the stakeholder. We identify three factors for each type of dependency and propose the equations that calculate the dependency indexes. Once both types of the dependency indexes are calculated, each stakeholder can be placed and categorised into one of the four groups, namely critical stakeholder, mutual benefits stakeholder, replaceable stakeholder, and easy care stakeholder. The mutual dependency grid and the dependency gap analysis, which further investigates the priority of each stakeholder by calculating the weighted dependency gap between the focal organisation and the stakeholder, subsequently help the focal organisation to better understand its stakeholders and manage its stakeholder relationships.
Resumo:
The Twitter network has been labelled the most commonly used microblogging application around today. With about 500 million estimated registered users as of June, 2012, Twitter has become a credible medium of sentiment/opinion expression. It is also a notable medium for information dissemination; including breaking news on diverse issues since it was launched in 2007. Many organisations, individuals and even government bodies follow activities on the network in order to obtain knowledge on how their audience reacts to tweets that affect them. We can use postings on Twitter (known as tweets) to analyse patterns associated with events by detecting the dynamics of the tweets. A common way of labelling a tweet is by including a number of hashtags that describe its contents. Association Rule Mining can find the likelihood of co-occurrence of hashtags. In this paper, we propose the use of temporal Association Rule Mining to detect rule dynamics, and consequently dynamics of tweets. We coined our methodology Transaction-based Rule Change Mining (TRCM). A number of patterns are identifiable in these rule dynamics including, new rules, emerging rules, unexpected rules and ?dead' rules. Also the linkage between the different types of rule dynamics is investigated experimentally in this paper.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.
Resumo:
In this paper we consider the structure of dynamically evolving networks modelling information and activity moving across a large set of vertices. We adopt the communicability concept that generalizes that of centrality which is defined for static networks. We define the primary network structure within the whole as comprising of the most influential vertices (both as senders and receivers of dynamically sequenced activity). We present a methodology based on successive vertex knockouts, up to a very small fraction of the whole primary network,that can characterize the nature of the primary network as being either relatively robust and lattice-like (with redundancies built in) or relatively fragile and tree-like (with sensitivities and few redundancies). We apply these ideas to the analysis of evolving networks derived from fMRI scans of resting human brains. We show that the estimation of performance parameters via the structure tests of the corresponding primary networks is subject to less variability than that observed across a very large population of such scans. Hence the differences within the population are significant.
Resumo:
This paper considers the use of Association Rule Mining (ARM) and our proposed Transaction based Rule Change Mining (TRCM) to identify the rule types present in tweet’s hashtags over a specific consecutive period of time and their linkage to real life occurrences. Our novel algorithm was termed TRCM-RTI in reference to Rule Type Identification. We created Time Frame Windows (TFWs) to detect evolvement statuses and calculate the lifespan of hashtags in online tweets. We link RTI to real life events by monitoring and recording rule evolvement patterns in TFWs on the Twitter network.
Resumo:
Long Term Evolution based networks lack native support for Circuit Switched (CS) services. The Evolved Packet System (EPS) which includes the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) and Evolved Packet Core (EPC) is a purely all-IP packet system. This introduces the problem of how to provide voice call support when a user is within an LTE network and how to ensure voice service continuity when the user moves out of LTE coverage area. Different technologies have been proposed for the purpose of providing a voice to LTE users and to ensure the service continues outside LTE networks. The aim of this paper is to analyze and evaluate the overall performance of these technologies along with Single Radio Voice Call Continuity (SRVCC) Inter-RAT handover to Universal Terrestrial Radio Access Networks/ GSM-EDGE radio access Networks (UTRAN/GERAN). The possible solutions for providing voice call and service continuity over LTE-based networks are Circuit Switched Fall Back (CSFB), Voice over LTE via Generic Access (VoLGA), Voice over LTE (VoLTE) based on IMS/MMTel with SRVCC and Over The Top (OTT) services like Skype. This paper focuses mainly on the 3GPP standard solutions to implement voice over LTE. The paper compares various aspects of these solutions and suggests a possible roadmap that mobile operators can adopt to provide seamless voice over LTE.
Resumo:
Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa.
Resumo:
Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.
Resumo:
Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight algorithms, developed for the retrieval of aerosol properties using data from AATSR (4), MERIS (3) and POLDER, were evaluated to determine their suitability for climate studies. The primary result from each of these algorithms is the aerosol optical depth (AOD) at several wavelengths, together with the Ångström exponent (AE) which describes the spectral variation of the AOD for a given wavelength pair. Other aerosol parameters which are possibly retrieved from satellite observations are not considered in this paper. The AOD and AE (AE only for Level 2) were evaluated against independent collocated observations from the ground-based AERONET sun photometer network and against “reference” satellite data provided by MODIS and MISR. Tools used for the evaluation were developed for daily products as produced by the retrieval with a spatial resolution of 10 × 10 km2 (Level 2) and daily or monthly aggregates (Level 3). These tools include statistics for L2 and L3 products compared with AERONET, as well as scoring based on spatial and temporal correlations. In this paper we describe their use in a round robin (RR) evaluation of four months of data, one month for each season in 2008. The amount of data was restricted to only four months because of the large effort made to improve the algorithms, and to evaluate the improvement and current status, before larger data sets will be processed. Evaluation criteria are discussed. Results presented show the current status of the European aerosol algorithms in comparison to both AERONET and MODIS and MISR data. The comparison leads to a preliminary conclusion that the scores are similar, including those for the references, but the coverage of AATSR needs to be enhanced and further improvements are possible for most algorithms. None of the algorithms, including the references, outperforms all others everywhere. AATSR data can be used for the retrieval of AOD and AE over land and ocean. PARASOL and one of the MERIS algorithms have been evaluated over ocean only and both algorithms provide good results.
Resumo:
We present an intuitive geometric approach for analysing the structure and fragility of T1-weighted structural MRI scans of human brains. Apart from computing characteristics like the surface area and volume of regions of the brain that consist of highly active voxels, we also employ Network Theory in order to test how close these regions are to breaking apart. This analysis is used in an attempt to automatically classify subjects into three categories: Alzheimer’s disease, mild cognitive impairment and healthy controls, for the CADDementia Challenge.
Resumo:
Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.
Resumo:
This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.
Resumo:
The urban heat island is a well-known phenomenon that impacts a wide variety of city operations. With greater availability of cheap meteorological sensors, it is possible to measure the spatial patterns of urban atmospheric characteristics with greater resolution. To develop robust and resilient networks, recognizing sensors may malfunction, it is important to know when measurement points are providing additional information and also the minimum number of sensors needed to provide spatial information for particular applications. Here we consider the example of temperature data, and the urban heat island, through analysis of a network of sensors in the Tokyo metropolitan area (Extended METROS). The effect of reducing observation points from an existing meteorological measurement network is considered, using random sampling and sampling with clustering. The results indicated the sampling with hierarchical clustering can yield similar temperature patterns with up to a 30% reduction in measurement sites in Tokyo. The methods presented have broader utility in evaluating the robustness and resilience of existing urban temperature networks and in how networks can be enhanced by new mobile and open data sources.
Resumo:
The network paradigm has been highly influential in spatial analysis in the globalisation era. As economies across the world have become increasingly integrated, so-called global cities have come to play a growing role as central nodes in the networked global economy. The idea that a city’s position in global networks benefits its economic performance has resulted in a competitive policy focus on promoting the economic growth of cities by improving their network connectivity. However, in spite of the attention being given to boosting city connectivity little is known about whether this directly translates to improved city economic performance and, if so, how well connected a city needs to be in order to benefit from this. In this paper we test the relationship between network connectivity and economic performance between 2000 and 2008 for cities with over 500,000 inhabitants in Europe and the USA to inform European policy.