971 resultados para N-15 recovery
Resumo:
OBJECTIVE: Pathological gaits have been shown to limit transfer between potential (PE) and kinetic (KE) energy during walking, which can increase locomotor costs. The purpose of this study was to examine whether energy exchange would be limited in people with knee osteoarthritis (OA). METHODS: Ground reaction forces during walking were collected from 93 subjects with symptomatic knee OA (self-selected and fast speeds) and 13 healthy controls (self-selected speed) and used to calculate their center of mass (COM) movements, PE and KE relationships, and energy recovery during a stride. Correlations and linear regressions examined the impact of energy fluctuation phase and amplitude, walking velocity, body mass, self-reported pain, and radiographic severity on recovery. Paired t-tests were run to compare energy recovery between cohorts. RESULTS: Symptomatic knee OA subjects displayed lower energetic recovery during self-selected walking speeds than healthy controls (P = 0.0018). PE and KE phase relationships explained the majority (66%) of variance in recovery. Recovery had a complex relationship with velocity and its change across speeds was significantly influenced by the self-selected walking speed of each subject. Neither radiographic OA scores nor subject self-reported measures demonstrated any relationship with energy recovery. CONCLUSIONS: Knee OA reduces effective exchange of PE and KE, potentially increasing the muscular work required to control movements of the COM. Gait retraining may return subjects to more normal patterns of energy exchange and allow them to reduce fatigue.
Resumo:
Animals must coordinate development with fluctuating nutrient availability. Nutrient availability governs post-embryonic development in Caenorhabditis elegans: larvae that hatch in the absence of food do not initiate post-embryonic development but enter "L1 arrest" (or "L1 diapause") and can survive starvation for weeks, while rapidly resume normal development once get fed. Insulin-like signaling (IIS) has been shown to be a key regulator of L1 arrest and recovery. However, the C. elegans genome encodes 40 insulin-like peptides (ILPs), and it is unknown which peptides participate in nutritional control of L1 arrest and recovery. Work in other contexts has identified putative receptor agonists and antagonists, but the extent of specificity versus redundancy is unclear beyond this distinction.
We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified 13 candidate agonists and 8 candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists was largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in systemic control of L1 development. Transcriptional regulation of candidate agonists was most significant in the intestine, as if nutrient uptake was a more important influence on transcription than sensory perception. Scanning in the 5' upstream promoter region of these 40 ILPs, We found that transcription factor PQM-1 and GATA putative binding sites are depleted in the promoter region of antagonists. A novel motif was also found to be over-represented in ILPs.
Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 recovery/developmental dynamics, though simultaneous disruption of ins-4 and daf-28 extended survival of L1 arrest without enhancing thermal tolerance, while overexpression of ins-4, ins-6 or daf-28 shortened L1 survival. Simultaneous disruption of several ILPs showed a temperature independent, transient dauer phenotype. These results revealed the relative redundancy and specificity among agonistic ILPs.
TGF- β and steroid hormone (SH) signaling have been reported to control the dauer formation along with IIS. Our preliminary results suggest they may also mediate the IIS control of L1 arrest and recovery, as the expression of several key components of TGF-β and SH signaling pathway genes are negatively regulated by DAF-16, and loss-of-function of these genes partially represses daf-16 null phenotype in L1 arrest, and causes a retardation in L1 development.
In summary, my dissertation study focused on the IIS, characterized the dynamics and sites of ILPs expression in response to nutrient availability, revealed the function of specific agonistic ILPs in L1 arrest, and suggested potential cross-regulation among IIS, TGF-β signaling and SH signaling in controlling L1 arrest and recovery. These findings provide insights into how post-embryonic development is governed by insulin-like signaling and nutrient availability.
Resumo:
The mechanisms involved in the recognition of microbial pathogens and activation of the immune system have been extensively studied. However, the mechanisms involved in the recovery phase of an infection are incompletely characterized at both the cellular and physiological levels. Here, we establish a Caenorhabditis elegans-Salmonella enterica model of acute infection and antibiotic treatment for studying biological changes during the resolution phase of an infection. Using whole genome expression profiles of acutely infected animals, we found that genes that are markers of innate immunity are down-regulated upon recovery, while genes involved in xenobiotic detoxification, redox regulation, and cellular homeostasis are up-regulated. In silico analyses demonstrated that genes altered during recovery from infection were transcriptionally regulated by conserved transcription factors, including GATA/ELT-2, FOXO/DAF-16, and Nrf/SKN-1. Finally, we found that recovery from an acute bacterial infection is dependent on ELT-2 activity.
Resumo:
BACKGROUND: Interleukin (IL)-15 is a chemotactic factor to T cells. It induces proliferation and promotes survival of activated T cells. IL-15 receptor blockade in mouse cardiac and islet allotransplant models has led to long-term engraftment and a regulatory T-cell environment. This study investigated the efficacy of IL-15 receptor blockade using Mut-IL-15/Fc in an outbred non-human primate model of renal allotransplantation. METHODS: Male cynomolgus macaque donor-recipient pairs were selected based on ABO typing, major histocompatibility complex class I typing, and carboxy-fluorescein diacetate succinimidyl ester-based mixed lymphocyte responses. Once animals were assigned to one of six treatment groups, they underwent renal transplantation and bilateral native nephrectomy. Serum creatinine level was monitored twice weekly and as indicated, and protocol biopsies were performed. Rejection was defined as a increase in serum creatinine to 1.5 mg/dL or higher and was confirmed histologically. Complete blood counts and flow cytometric analyses were performed periodically posttransplant; pharmacokinetic parameters of Mut-IL-15/Fc were assessed. RESULTS: Compared with control animals, Mut-IL-15/Fc-treated animals did not demonstrate increased graft survival despite adequate serum levels of Mut-IL-15/Fc. Flow cytometric analysis of white blood cell subgroups demonstrated a decrease in CD8 T-cell and natural killer cell numbers, although this did not reach statistical significance. Interestingly, two animals receiving Mut-IL-15/Fc developed infectious complications, but no infection was seen in control animals. Renal pathology varied widely. CONCLUSIONS: Peritransplant IL-15 receptor blockade does not prolong allograft survival in non-human primate renal transplantation; however, it reduces the number of CD8 T cells and natural killer cells in the peripheral blood.
Resumo:
Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.
Resumo:
Existing theories explain why operons are advantageous in prokaryotes, but their occurrence in metazoans is an enigma. Nematode operon genes, typically consisting of growth genes, are significantly upregulated during recovery from growth-arrested states. This expression pattern is anticorrelated to nonoperon genes, consistent with a competition for transcriptional resources. We find that transcriptional resources are initially limiting during recovery and that recovering animals are highly sensitive to any additional decrease in transcriptional resources. We provide evidence that operons become advantageous because, by clustering growth genes into operons, fewer promoters compete for the limited transcriptional machinery, effectively increasing the concentration of transcriptional resources and accelerating recovery. Mathematical modeling reveals how a moderate increase in transcriptional resources can substantially enhance transcription rate and recovery. This design principle occurs in different nematodes and the chordate C. intestinalis. As transition from arrest to rapid growth is shared by many metazoans, operons could have evolved to facilitate these processes.
Resumo:
Office-based percutaneous revision of a testicular prosthesis has never been reported. A patient received a testicular prosthesis but was dissatisfied with the firmness of the implant. In an office setting, the prosthesis was inflated with additional fluid via a percutaneous approach. Evaluated outcomes included patient satisfaction, prosthesis size, recovery time, and cost savings. The patient was satisfied, with no infection, leak, or complication after more than 1 year of follow-up, at significantly less cost than revision surgery. Percutaneous adjustment of testicular prosthesis fill-volume can be safe, inexpensive, and result in good patient satisfaction.
Resumo:
p.105-110
Resumo:
p.203-213
Resumo:
Esta comunicación presenta resultados parciales de un estudio de dos casos (en España y Armenia), que ha tratado de conocer la importancia que tienen las oportunidades de aprendizaje (OTL) que ofrece el profesor en su aula (particularmente, en este documento tratamos el tipo de tareas que éste selecciona y propone) a la hora de facilitar la adquisición de las competencias matemáticas (CM) de sus estudiantes. Tomamos la información de observaciones de clases y entrevista (a dos profesores de Educación Secundaria) y de prueba (a los estudiantes de 15 años) y realizamos análisis de datos combinando técnicas cualitativas y cuantitativas. Los resultados de nuestra investigación, relativos al tipo de tareas, han constatado una fuerte relación de las CM de los estudiantes con la oportunidad de resolver cierto tipo de tareas (demanda cognitiva y situaciones/contextos en las que se plantean).
Resumo:
The recovery of platinum group metals (PGMs) from catalytic converters of spent exhaust systems is considered in this paper. To be cost-effective, recovery processes must be well over 90% efficient and so the optimisation of their operation is vital. Effective optimisation requires a sound understanding of the operation and the underlying process mechanisms. This paper focuses on pyrometallurgical recovery operations used and typified by the Johnson–Matthey process. Analysis of this process reveals that it cannot be simply explained by the gravity model that is normally assumed. The analysis reveals that the affinity of PGM particles for the melted collector metal is a key factor in the behaviour of the process. A rational explanation of the key issues that govern the process behaviour is proposed and shown to be consistent with available operational data. The results generated would be applicable to other similar processes.
Resumo:
A commercial pyrometallurgical process for the extraction of platinum-group metals (PGM) from a feedstock slag was analysed with the use of a model based on computational fluid dynamics. The results of the modelling indicate that recovery depends on the behaviour of the collector phase. A possible method is proposed for estimation of the rate at which PGM particles in slag are absorbed into an iron collector droplet that falls through it. Nanoscale modelling techniques (for particle migration or capture) are combined with a diffusion-controlled mass-transfer model to determine the iron collector droplet size needed for >95% PGM recovery in a typical process bath (70 mm deep) in a realistic time-scale (<1 h). The results show that an iron droplet having a diameter in the range 0.1–0.3 mm gives good recovery (>90%) within a reasonable time. This finding is compatible with published experimental data. Pyrometallurgical processes similar to that investigated should be applicable to other types of waste that contain low levels of potentially valuable metals.
Resumo:
Identification, when sought, is not necessarily obtained. Operational guidance that is normatively acceptable may be necessary for such cases. We proceed to formalize and illustrate modes of exchanges of individual identity, and provide procedures of recovery strategies in specific prescriptions from an ancient body of law for such situations when, for given types of purposes, individuals of some relevant kind had become intermixed and were undistinguishable. Rules were devised, in a variety of domains, for coping with situations that occur if and when the goal of identification was frustrated. We propose or discuss mathematical representations of such recovery procedures.