972 resultados para Muscle Differentiation
Resumo:
The effect of motor training using closed loop controlled Functional Electrical Stimulation (FES) on motor performance was studied in 5 spinal cord injured (SCI) volunteers. The subjects trained 2 to 3 times a week during 2 months on a newly developed rehabilitation robot (MotionMaker?). The FES induced muscle force could be adequately adjusted throughout the programmed exercises by the way of a closed loop control of the stimulation currents. The software of the MotionMaker? allowed spasms to be detected accurately and managed in a way to prevent any harm to the SCI persons. Subjects with incomplete SCI reported an increased proprioceptive awareness for motion and were able to achieve a better voluntary activation of their leg muscles during controlled FES. At the end of the training, the voluntary force of the 4 incomplete SCI patients was found increased by 388% on their most affected leg and by 193% on the other leg. Active mobilisation with controlled FES seems to be effective in improving motor function in SCI persons by increasing the sensory input to neuronal circuits involved in motor control as well as by increasing muscle strength.
Resumo:
Skeletal muscle size is tightly regulated by the synergy between anabolic and catabolic signalling pathways which, in humans, have not been well characterized. Akt has been suggested to play a pivotal role in the regulation of skeletal muscle hypertrophy and atrophy in rodents and cells. Here we measured the amount of phospho-Akt and several of its downstream anabolic targets (glycogen synthase kinase-3beta (GSK-3beta), mTOR, p70(s6k) and 4E-BP1) and catabolic targets (Foxo1, Foxo3, atrogin-1 and MuRF1). All measurements were performed in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy-stimulating resistance training and atrophy-stimulating de-training. Following resistance training a muscle hypertrophy ( approximately 10%) and an increase in phospho-Akt, phospho-GSK-3beta and phospho-mTOR protein content were observed. This was paralleled by a decrease in Foxo1 nuclear protein content. Following the de-training period a muscle atrophy (5%), relative to the post-training muscle size, a decrease in phospho-Akt and GSK-3beta and an increase in Foxo1 were observed. Atrogin-1 and MuRF1 increased after the hypertrophy and decreased after the atrophy phases. We demonstrate, for the first time in human skeletal muscle, that the regulation of Akt and its downstream signalling pathways GSK-3beta, mTOR and Foxo1 are associated with both the skeletal muscle hypertrophy and atrophy processes
Resumo:
This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P < 0.05). Cerebral HbO2 and Hbtot increased while HHb decreased during contractions with differences observed between 60% vs. 40% and 20% MVC (P < 0.05). Muscle HbO2 decreased while HHb increased during contractions with differences being observed among intensities (P < 0.05). Muscle Hbtot increased from rest at 20% MVC (P < 0.05), while no further change was observed at 40 and 60% MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P < 0.05), but not changes in cerebral HbO2 (P > 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation.
Resumo:
T helper cell (Th) functions are crucial for proper immune defence against various intra- and extracellular pathogens. According to the specific immune responses, Th cells can be classified into subtypes, Th1 and Th2 cells being the most frequently characterized classes. Th1 and Th2 cells interact with other immune cells by regulating their functions with specific cytokine production. IFN, IL-2 and TNF- are the cytokines predominantly produced by Th1 cells whereas Th2 cells produce Th2-type cytokines, such as IL-4, IL-5 and IL-13. Upon TCR activation and in the presence of polarizing cytokines, Th cells differentiate into effector subtypes from a common precursor cell. IFN and IL-12 are the predominant Th1 polarizing cytokines whereas IL-4 directs Th2 polarization. The cytokines mediate their effects through specific receptor signalling. The differentiation process is complex, involving various signalling molecules and routes, as well as functions of the specific transcription factors. The functions of the Th1/Th2 cells are tightly regulated; however, knowledge on human Th cell differentiation is, as yet, fairly poor. The susceptibility for many immune-mediated disorders often originates from disturbed Th cell responses. Thus, research is needed for defining the molecular mechanisms involved in the differentiation and balanced functions of the Th cells. Importantly, the new information obtained will be crucial for a better understanding of the pathogenesis of immune-mediated disorders, such as asthma or autoimmune diseases. In the first subproject of this thesis, the role of genetic polymorphisms in the human STAT6, GATA3 and STAT4 genes were investigated for asthma or atopy susceptibility in Finnish asthma families by association analysis. These genes code for key transcription factors regulating Th cell differentiation. The study resulted in the identification of a GATA3 haplotype that associated with asthma and related traits (high serum IgE level). In the second subproject, an optimized method for human primary T cell transfection and enrichment was established. The method can be utilized for functional studies for the selected genes of interest. The method was also utilized in the third subproject, which aimed at the identification of novel genes involved in early human Th cell polarization (0-48h) using genome-wide oligonucleotide arrays. As a result, numerous genes and ESTs with known or unknown functions were identified in the study. Using an shRNA knockdown approach, a panel of novel IL-4/STAT6 regulated genes were identified in the functional studies of the genes. Moreover, one of the genes, NDFIP2, with a previously uncharacterized role in the human Th differentiation, was observed to promote IFN production of the differentiated Th1 cells. Taken together, the results obtained have revealed potential new relevant candidate genes serving as a basis for further studies characterizing the detailed networks involved in the human Th cell differentiation as well as in the genetic susceptibility of Th-mediated immune disorders.
Resumo:
Th2-solujen erilaistumista ohjaavat säätelyverkostot ja niiden tutkiminen proteomiikan avulla Astma ja allergiat ovat laajalle levinneitä ja vakavia sairauksia, joista kärsivät miljoonat ihmiset ympäri maailmaa. Koe-eläimillä tehdyt tutkimukset osoittavat, että interleukiini-4 (IL-4) on tärkeä allergisen astman ja allergioiden kehittymiselle ja kroonistumiselle. Se ohjaa T-auttajasolujen (Th-solujen) kehittymistä Th2-tyypin soluiksi, joilla on merkittävä rooli näiden tautien puhkeamisessa. Th2-solut tuottavat myös itse IL-4:ä, joka edesauttaa taudin seuraavien vaiheiden kehittymistä. Erityisesti STAT6-proteiini, joka aktivoituu IL-4-stimulaation seurauksena, on tarpeen Th2- vasteen syntymiselle ja kroonistumiselle antigeenin aiheuttamassa keuhkoputkien astmaattisessa tulehduksessa. Väitöskirjatyöni tarkoituksena oli käyttää kaksidimensionaaliseen elektroforeesiin (2- DE) perustuvaa proteomiikkaa ja massaspektrometriaa uusien Th2-solujen erilaistumista säätelevien proteiinien tunnistamiseksi. Erilaistumattomat Th-solut eristettiin vastasyntyneen napaverestä tai hiiren pernasta. Solut aktivoitiin Tsolureseptorin ja ns. ko-stimulatoristen reseptorien kautta ja erilaistettiin joko Th1- tai Th2-suuntaan vastaavasti erilaistavien IL-12- ja IL-4-sytokiinien avulla. Ensimmäisessä tutkimuksessa in vitro -erilaistettujen Th1- ja Th2-solujen proteomeja verrattiin keskenään proteiinien ilmenemisessä tai proteiinimodifikaatioissa olevien erojen tunnistamiseksi. Kaksi muuta päätutkimusta keskittyivät IL-4:n aiheuttamaan proteiinitason säätelyyn ensimmäisen vuorokauden aikana T-soluaktivaation jälkeen. Näistä ensimmäisessä IL-4:n aiheuttamia eroja tunnistettiin aktivoiduista ihmisen Thsoluista. IL-4:n todettiin säätelevän useita proteiineja kaspaasien välittämissä signalointiteissä sekä lisäävän T-solujen elävyyttä ja aktivoitumista. Toisessa tutkimuksessa STAT6-poistogeenisten hiirien lymfosyyttien proteomia verrattiin villityypin kontrollisoluihin T-soluaktivaation ja IL-4-stimulaation jälkeen. Näissä tutkimuksissa karakterisoitiin useita uusia IL-4:n ja STAT6:n kohdeproteiineja ja löydettiin uusia säätelyverkostoja. Tutkimustulokset ovat johtaneet uusiin Th2-erilaistumismekanismeja koskeviin hypoteeseihin.
Resumo:
OBJECTIVE-Chronic exercise and obesity both increase intra-myocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype.RESEARCH DESIGN AND METHODS-A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies.RESULTS-DAG content in the NWA group was approximately twofold higher than in the OBS group and similar to 50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, DAGs, and insulin sensitivity.CONCLUSIONS-Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. Diabetes 60:2588-2597, 2011
Resumo:
Exercise is classically associated with muscular soreness, presenting one to two days later, delayed onset muscular soreness. Blood muscle enzymes and protein elevations are characteristic, and may cause renal failure. Creatin phosphokinase peak appears on the fourth day and depends on exercise type and individual parameters. This effect is attenuated with repeated bouts, by habituation. Metabolic complications are rare. The knowledge of this reaction, even with common exercises, allows to postpone investigations for a complex metabolic disorder, or to avoid stopping a medication for fear of a side effect, as with statins. Indeed, it is necessary to wait for seven days without any exercise before interpreting an elevated CK result.
Resumo:
The activity of adult stem cells is essential to replenish mature cells constantly lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. Here, we provide genetic evidence for an unexpected function of the c-Myc protein in the homeostasis of hematopoietic stem cells (HSCs). Conditional elimination of c-Myc activity in the bone marrow (BM) results in severe cytopenia and accumulation of HSCs in situ. Mutant HSCs self-renew and accumulate due to their failure to initiate normal stem cell differentiation. Impaired differentiation of c-Myc-deficient HSCs is linked to their localization in the differentiation preventative BM niche environment, and correlates with up-regulation of N-cadherin and a number of adhesion receptors, suggesting that release of HSCs from the stem cell niche requires c-Myc activity. Accordingly, enforced c-Myc expression in HSCs represses N-cadherin and integrins leading to loss of self-renewal activity at the expense of differentiation. Endogenous c-Myc is differentially expressed and induced upon differentiation of long-term HSCs. Collectively, our data indicate that c-Myc controls the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSCs and their niche.
Resumo:
BACKGROUND: Sunitinib (VEGFR/PDGFR inhibitor) and everolimus (mTOR inhibitor) are both approved for advanced renal cell carcinoma (RCC) as first-line and second-line therapy, respectively. In the clinics, sunitinib treatment is limited by the emergence of acquired resistance, leading to a switch to second-line treatment at progression, often based on everolimus. No data have been yet generated on programmed alternating sequential strategies combining alternative use of sunitinib and everolimus before progression. Such strategy is expected to delay the emergence of acquired resistance and improve tumour control. The aim of our study was to assess the changes in tumours induced by three different sequences administration of sunitinib and everolimus. METHODS: In human Caki-1 RCC xenograft model, sunitinib was alternated with everolimus every week, every 2 weeks, or every 3 weeks. Effects on necrosis, hypoxia, angiogenesis, and EMT status were assessed by immunohisochemistry and immunofluorescence. RESULTS: Sunitinib and everolimus programmed sequential regimens before progression yielded longer median time to tumour progression than sunitinib and everolimus monotherapies. In each group of treatment, tumour growth control was associated with inhibition of mTOR pathway and changes from a mesenchymal towards an epithelial phenotype, with a decrease in vimentin and an increase in E-cadherin expression. The sequential combinations of these two agents in a RCC mouse clinical trial induced antiangiogenic effects, leading to tumour necrosis. CONCLUSIONS: In summary, our study showed that alternate sequence of sunitinib and everolimus mitigated the development of mesenchymal phenotype compared with sunitinib as single agent.
Resumo:
AIM: Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. MATERIALS & METHODS: Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. RESULTS: Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. DISCUSSION & CONCLUSION: This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.
Resumo:
Dermatophytes are human and animal pathogenic fungi which cause cutaneous infections and grow exclusively in the stratum corneum, nails and hair. In a culture medium containing soy proteins as sole nitrogen source a substantial proteolytic activity was secreted by Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. This proteolytic activity was 55-75 % inhibited by o-phenanthroline, attesting that metalloproteases were secreted by all three species. Using a consensus probe constructed on previously characterized genes encoding metalloproteases (MEP) of the M36 fungalysin family in Aspergillus fumigatus, Aspergillus oryzae and M. canis, a five-member MEP family was isolated from genomic libraries of T. rubrum, T. mentagrophytes and M. canis. A phylogenetic analysis of genomic and protein sequences revealed a robust tree consisting of five main clades, each of them including a MEP sequence type from each dermatophyte species. Each MEP type was remarkably conserved across species (72-97 % amino acid sequence identity). The tree topology clearly indicated that the multiplication of MEP genes in dermatophytes occurred prior to species divergence. In culture medium containing soy proteins as a sole nitrogen source secreted Meps accounted for 19-36 % of total secreted protein extracts; characterization of protein bands by proteolysis and mass spectrometry revealed that the three dermatophyte species secreted two Meps (Mep3 and Mep4) encoded by orthologous genes.