905 resultados para Multiplication operators
Resumo:
in this short note, we determine precisely which operators have the property that their (full, symmetric or antisymmetric) second quantisation is an operator which is bounded or belongs to one of the various Schatten ideals; we also note that in 'the interior' of the natural domain, the second quantisation is a continuous map.
Resumo:
Multiple quantum-single quantum correlation experiments are employed for spectral simplification and determination of the relative signs of the couplings. In this study, we have demonstrated the excitation of three nuclei, triple quantum coherences and discussed the information obtainable from such experiments. The experiments have been carried out on doubly labeled acetonitrile and fluoroacetonitrile aligned in liquid crystalline media. The experiment is advantageous in providing many spectral parameters from a single experiment. The coherence pathways involved in the pulse sequence are described using product operators. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper, the classical problem of homogenization of elliptic operators in arbitrary domains with periodically oscillating coefficients is considered. Using Bloch wave decomposition, a new proof of convergence is furnished. It sheds new light and offers an alternate way to view the classical results. In a natural way, this method leads us to work in the Fourier space and thus in a framework dual to the one used by L. Tartar [Problemes d'Homogeneisation dans les Equations aux: Derivees Partielles, Cours Peccot au College de Prance, 1977] in his method of homogenization. Further, this technique offers a nontraditional way of calculating the homogenized coefficients which is easy to implement in the computer.
Resumo:
Genetic algorithms (GAs) are search methods that are being employed in a multitude of applications with extremely large search spaces. Recently, there has been considerable interest among GA researchers in understanding and formalizing the working of GAs. In an earlier paper, we have introduced the notion of binomially distributed populations as the central idea behind an exact ''populationary'' model of the large-population dynamics of the GA operators for objective functions called ''functions of unitation.'' In this paper, we extend this populationary model of GA dynamics to a more general class of objective functions called functions of unitation variables. We generalize the notion of a binomially distributed population to a generalized binomially distributed population (GBDP). We show that the effects of selection, crossover, and mutation can be exactly modelled after decomposing the population into GBDPs. Based on this generalized model, we have implemented a GA simulator for functions of two unitation variables-GASIM 2, and the distributions predicted by GASIM 2 match with those obtained from actual GA runs. The generalized populationary model of GA dynamics not only presents a novel and natural way of interpreting the workings of GAs with large populations, but it also provides for an efficient implementation of the model as a GA simulator. (C) Elsevier Science Inc. 1997.
Resumo:
Let D denote the open unit disk in C centered at 0. Let H-R(infinity) denote the set of all bounded and holomorphic functions defined in D that also satisfy f(z) = <(f <(z)over bar>)over bar> for all z is an element of D. It is shown that H-R(infinity) is a coherent ring.