978 resultados para Multidrug-resistant organisms
Resumo:
Paracoccidioidomycosis (PCM) is the most prevalent deep mycosis in Latin America and presents a wide spectrum of clinical manifestations. We established a genetically controlled murine model of PCM, where A/Sn mice develop an infection which mimics the benign disease (immune responses which favor cellular immunity) and B10.A animals present the progressive disseminated form of PCM (preferential activation of B cells and impairment of cellular immune responses). To understand the immunoregulatory phenomena associated with resistance and susceptibility in experimental PCM, A/Sn and B10.A mice were studied regarding antigen-elicited secretion of monokines (TNF-a and TGF-ß) and type-1 (IL-2 and IFN-g) and type-2 (IL-4,5,10) cytokines. Total lymph node cells from resistant mice infected ip with P. brasiliensis produced early and sustained levels of IFN-g and IL-2; type-2 cytokines (IL-4 and IL-5) started to appear 8 weeks after infection. In contrast, susceptible mice produced low levels of IFN-g concomitant with significant levels of IL-5 and IL-10 early in the infection. In the chronic phase of the disease, susceptible animals presented a transitory secretion of IL-2, and IL-4. In the pulmonary infection IL-4, IL-5 and IL-10 were preferentially detected in the lung cells washings of susceptible animals. After in vitro challenge with fungal antigens, normal peritoneal macrophages from B10.A mice secreted high levels of TGF-ß and low levels of TNF-a. In contrast, macrophages from A/Sn animals released high levels of TNF-a associated with a small production of TGF-ß. The in vivo depletion of IFN-g not only abrogated the resistance of A/Sn mice but also diminished the relative resistance of B10.A animals. The in vivo depletion of IL-4 did not alter the disease outcome, whereas administration of rIL-12 significantly enhanced resistance in susceptible animals. Taken together, these results suggest that an early secretion of high levels of TNF-a and IFN-g followed by a sustained secretion of IL-2 and IFN-g plays a dominant role in the resistance mechanisms to P. brasiliensis infection. In contrast, an early and ephemeral secretion of low levels of TNF-a and IFN-g associated with production of IL-5, IL-10 and TGF-ß characterizes the progressive disease of susceptible animals.
Resumo:
Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.
Resumo:
The multidrug resistance P-glycoprotein is a transmembrane efflux pump expressed by lymphocytes and is involved in their cytolytic activity. In the present study, we investigated the age-related changes of P-glycoprotein function in normal peripheral blood lymphocytes. Blood samples from 90 normal volunteers (age range, 0 to 86 years) were analyzed. P-glycoprotein function was assessed by the flow cytometric rhodamine 123 assay. P-glycoprotein function was highest in cord blood and progressively declined with age in peripheral blood T CD4+ and CD8+ cells. In contrast, P-glycoprotein function did not vary with age in CD19+ B or CD16+CD56+ natural killer cells. These data suggest that the decline in P-glycoprotein function in T CD4+ and CD8+ lymphocytes as a function of age may contribute to the decrease in T cell cytolytic activity with aging.
Resumo:
The objective of the present study was to determine the effects of retinoic acid on the growth of the mouse mammary cells HC11 and HC11ras, which are a model for in vitro breast cancer progression. The expression of the two classes (RARs and RXRs) of retinoic acid receptor mRNAs was determined by Northern blot analysis. Receptor functional integrity was determined by testing whether RAR ß mRNA could be induced by retinoic acid. The effects of a 72-h exposure to 50 µM 13-cis retinoic acid on HC11 and HC11ras cell proliferation and HC11 cell differentiation were investigated by flow cytometric cell cycle analysis, and by determination of ß-casein mRNA expression, respectively. The possibility that retinoic acid would induce the expression of the vitamin D receptor and synergize with vitamin D, a known inhibitor of HC11 cell growth, was also investigated. HC11 cells expressed higher mRNA levels of both RAR a and RAR g when compared to HC11ras cells. In contrast, RAR ß, as well as RXR a, ß and g expression was low in both HC11 and HC11ras cells. In addition, RAR ß mRNA was induced by retinoic acid treatment in both cells. In spite of these observations, no effects were seen on cell proliferation or differentiation upon exposure to retinoic acid. Neither vitamin D receptor induction nor synergy with vitamin D on growth inhibition was observed. We conclude that the RAR expression profile could be related to the transformed state in HC11ras cells and that the retinoic acid resistance observed merits further investigation.
Resumo:
Nosocomial dissemination of glycopeptide-resistant enterococci represents a major problem in hospitals worldwide. In Brazil, the dissemination among hospitals in the city of São Paulo of polyclonal DNA profiles was previously described for vancomycin-resistant Enterococcus faecium. We describe here the dissemination of VanA phenotype E. faecalis between two hospitals located in different cities in the State of São Paulo. The index outbreak occurred in a tertiary care university hospital (HCUSP) in the city of São Paulo and three years later a cluster caused by the same strain was recognized in two patients hospitalized in a private tertiary care hospital (CMC) located 100 km away in the interior of the state. From May to July 1999, 10 strains of vancomycin-resistant E. faecalis were isolated from 10 patients hospitalized in the HCUSP. The DNA genotyping using pulsed-field gel electrophoresis (PFGE) showed that all isolates were originated from the same clone, suggesting nosocomial dissemination. From May to July 2002, three strains of vancomycin-resistant E. faecalis were isolated from two patients hospitalized in CMC and both patients were colonized by the vancomycin-resistant Enterococcus in skin lesions. All isolates from CMC and HCUSP were highly resistant to vancomycin and teicoplanin. The three strains from CMC had minimum inhibitory concentration >256 µg/ml for vancomycin, and 64 (CMC 1 and CMC 2) and 96 µg/ml (CMC 3) for teicoplanin, characterizing a profile of VanA resistance to glycopeptides. All strains had the presence of the transposon Tn1546 detected by PCR and were closely related when typed by PFGE. The dissemination of the E. faecalis VanA phenotype among hospitals located in different cities is of great concern because E. faecalis commonly colonizes the gastrointestinal tract of patients and healthy persons for periods varying from weeks to years, which, together with the persistence of vancomycin-resistant Enterococcus in hospital rooms after standard cleaning procedures, increases the risk of the dissemination and reservoir of the bacteria.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) has been the cause of major outbreaks and epidemics among hospitalized patients, with high mortality and morbidity rates. We studied the genomic diversity of MRSA strains isolated from patients with nosocomial infection in a University Hospital from 1991 to 2001. The study consisted of two periods: period I, from 1991 to 1993 and period II from 1995 to 2001. DNA was typed by pulsed-field gel electrophoresis and the similarity among the MRSA strains was determined by cluster analysis. During period I, 73 strains presented five distinctive DNA profiles: A, B, C, D, and E. Profile A was the most frequent DNA pattern and was identified in 55 (75.3%) strains; three closely related and four possibly related profiles were also identified. During period II, 80 (68.8%) of 117 strains showed the same endemic profile A identified during period I, 18 (13.7%) closely related profiles and 18 (13.7%) possibly related profiles and, only one strain presented an unrelated profile. Cluster analysis showed a 96% coefficient of similarity between profile A from period I and profile A from period II, which were considered to be from the same clone. The molecular monitoring of MRSA strains permitted the determination of the clonal dissemination and the maintenance of a dominant endemic strain during a 10-year period and the presence of closely and possibly related patterns for endemic profile A. However, further studies are necessary to improve the understanding of the dissemination of the endemic profile in this hospital.
Resumo:
The world’s population is growing at a rapid rate and one of the primary problems of a growing is food supply. To ensure food supply and security, the biggest companies in the agricultural sector of the United States and all over the world have collaborated to produce genetically modified organisms, including crops, that have a tendency to increase yields and are speculated to reduce pesticide use. It’s a technology that is declared to have a multitude of benefits. During the same time period another set of practices has risen to the horizon by the name of agroecology. It spreads across many different sectors such as politics, sociology, environment, health and so on. Moreover, it involves primitive organic techniques that can be applied at farm level to enhance the performance of an ecosystem to effectively decrease the negative effect on environment and health of individuals while producing good quality foods. Since both the processes proclaim sustainable development, a natural question may come in mind that which one seems more favorable? During the course of this study, genetically modified organisms (GMOs) and agroecology are compared within the sphere of social, environmental and health aspects. The results derived upon a comparative analysis of scientific literature tend to prove that GMOs pose a greater threat to the environment, health of individuals and the generalized social balance in the United States compared to agroecological practices. Economic indicators were not included in the study and more studies might be needed in the future to get a broader view on the subject.
Resumo:
Essential hypertension is a disease multifactorially triggered by genetic and environmental factors. The contribution of genetic polymorphisms of the renin-angiotensin-aldosterone system and clinical risk factors to the development of resistant hypertension was evaluated in 90 hypertensive patients and in 115 normotensive controls living in Southwestern Brazil. Genotyping for insertion/deletion of angiotensin-converting enzyme, angiotensinogen M235T, angiotensin II type 1 receptor A1166C, aldosterone synthase C344T, and mineralocorticoid receptor A4582C polymorphisms was performed by PCR, with further restriction analysis when required. The influence of genetic polymorphisms on blood pressure variation was assessed by analysis of the odds ratio, while clinical risk factors were evaluated by logistic regression. Our analysis indicated that individuals who carry alleles 235-T, 1166-A, 344-T, or 4582-C had a significant risk of developing resistant hypertension (P < 0.05). Surprisingly, when we tested individuals who carried the presumed risk genotypes A1166C, C344T, and A4582C we found that these genotypes were not associated with resistant hypertension. However, a gradual increase in the risk to develop resistant hypertension was detected when the 235-MT and TT genotypes were combined with one, two or three of the supposedly more vulnerable genotypes - A1166C (AC/AA), C344T (TC/TT) and A4582C (AC/CC). Analysis of clinical parameters indicated that age, body mass index and gender contribute to blood pressure increase (P < 0.05). These results suggest that unfavorable genetic renin-angiotensin-aldosterone system patterns and clinical risk variables may contribute to increasing the risk for the development of resistant hypertension in a sample of the Brazilian population.
Resumo:
The anti-tumor effect of the Moroccan endemic thyme (Thymus broussonettii) essential oil (EOT) was investigated in vitro using the human ovarian adenocarcinoma IGR-OV1 parental cell line OV1/P and its chemoresistant counterparts OV1/adriamycin (OV1/ADR), OV1/vincristine (OV1/VCR), and OV1/cisplatin (OV1/CDDP). All of these cell lines elicited various degrees of sensitivity to the cytotoxic effect of EOT. The IC50 values (mean ± SEM, v/v) were 0.40 ± 0.02, 0.39 ± 0.02, 0.94 ± 0.05, and 0.65 ± 0.03% for OV1/P, OV1/ADR, OV1/VCR, and OV1/CDDP, respectively. Using the DBA-2/P815 (H2d) mouse model, tumors were developed by subcutaneous grafting of tumor fragments of similar size obtained from P815 (murin mastocytoma cell line) injected in donor mouse. Interestingly, intra-tumoral injection of EOT significantly reduced solid tumor development. Indeed, by the 30th day of repeated EOT treatment, the tumor volumes of the animals were 2.00 ± 0.27, 1.35 ± 0.20, and 0.85 ± 0.18 cm³ after injection with 10, 30, or 50 µL per 72 h (six times), respectively, as opposed to 3.88 ± 0.50 cm³ for the control animals. This tumoricidal effect was associated with a marked decrease of mouse mortality. In fact, in these groups of mice, the recorded mortality by the 30th day of treatment was 30 ± 4, 18 ± 4, and 8 ± 3%, respectively, while the control animals showed 75 ± 10% of mortality. These data indicate that the EOT which contains carvacrol as the major component has an important in vitro cytotoxic activity against tumor cells resistant to chemotherapy as well as a significant antitumor effect in mice. However, our data do not distinguish between carvacrol and the other components of EOT as the active factor.
Resumo:
Enterococcus spp bacteremia is associated with high mortality and the appearance of high-level gentamicin resistance (HLGR) created additional challenges for the treatment of these infections. We evaluated the epidemiological and clinical characteristics of patients with bacteremias caused by HLGR and non_HLGR Enterococcus faecalis isolates at a teaching hospital in the State of São Paulo, Brazil. Patients with bacteremia due to E. faecalis diagnosed between January 1999 and December 2003 were included in the study. We collected clinical, epidemiological, and microbiological data from medical records. Banked isolates were typed using pulsed-field gel electrophoresis. We identified 145 cases of E. faecalis bacteremia: 66 (45.5%) were caused by HLGR isolates and 79 (54.5%) by non_HLGR. In the univariate analysis, patients with HLGR infection were older, had higher rates of bladder catheterization, and more often had treatment with cephalosporin, quinolone, and/or carbapenem compared with patients with non_HLGR infection (P < 0.05). Multivariate analysis indicated that older age, hematological malignancy, and previous use of vancomycin were independently associated with HLGR (P < 0.05). Mortality rates were not significantly different among patients with HLGR (50%) and non_HLGR (43%) infections (P = 0.40). Of the 32 genotyped isolates, 16 were distributed into 6 main electrophoresis patterns and 16 others had distinct patterns. E. faecalis bacteremia is associated with high mortality and is frequently caused by HLGR isolates at this teaching hospital. The variability among genotyped isolates suggests that endogenous infections, rather than patient-to-patient transmission of E. faecalis, are more common at this institution.
Resumo:
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emergent pathogen in Brazil. However, there are no data on the prevalence of CA-MRSA. We report here the first well-characterized case of severe life-threatening CA-MRSA infection in a child living in Rio de Janeiro city. The patient had many complications including hematogenous osteomyelitis and involvement of multiple sites requiring drainage of soft-tissue abscess, and pleural and pericardial empyema. The MRSA isolates recovered were genotyped using PFGE, SCCmec typing and multilocus sequence typing. Disk diffusion tests were performed following Clinical and Laboratory Standards Institute recommendations. In addition, the presence of Panton-Valentine leukocidin (PVL) was assessed by PCR amplification, using specific primers for lukF-pv (encoding for the F subunit of the PVL). The bacterial isolates were related to the ST30-SCCmecIV lineage (Oceania Southwest Pacific clone), a PVL producer CA-MRSA previously detected in Porto Alegre, RS, Brazil. Also, the isolates analyzed were susceptible to all non-β-lactam antibiotics tested. The present report demonstrates that disseminated CA-MRSA disease is also occurring in Rio de Janeiro. Thus, the empirical treatment of moderate or severe infections suspected of being associated with CA-MRSA needs to be reviewed in order to allow prompt initiation of an effective therapy that also covers these microorganisms.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) is a major agent of hospital infections worldwide. In Brazil, a multiresistant MRSA lineage (ST239-SCCmecIIIA), the so-called Brazilian epidemic clone (BEC), has predominated in all regions. However, an increase in nosocomial infections caused by non-multiresistant MRSA clones has recently been observed. In the present study, 45 clinical isolates of MRSA obtained from a university hospital located in Natal city, Brazil, were identified by standard laboratory methods and molecularly characterized using staphylococcal chromosome cassette mec (SCCmec) typing and pulsed-field gel electrophoresis. Antimicrobial susceptibility testing was carried out using CLSI methods. The MRSA isolates studied displayed a total of 8 different pulsed-field gel electrophoresis patterns (types A to H) with predominance (73%) of pattern A (BEC-related). However, MRSA harboring SCCmec type IV were also identified, 3 (7%) of which were genetically related to the pediatric clone - USA800 (ST5-SCCmecIV). In addition, we found a considerable genetic diversity within BEC isolates. MRSA displaying SCCmecIV are frequently susceptible to the majority of non-β-lactam antibiotics. However, emergence of multiresistant variants of USA800 was detected.
Resumo:
The objective of this study was to investigate the occurrence of vancomycin-resistant Enterococcus (VRE) cross-transmission between two patient groups (long-term dialysis and kidney transplant patients). Molecular typing, by automated ribotyping with the RiboPrinter Microbial Characterization System (Qualicon, USA), was used to analyze VRE isolates from 31 fecal samples of 320 dialysis patients and 38 fecal samples of 280 kidney transplant patients. Clonal spread of E. faecalis and E. casseliflavus was observed intragroup, but not between the two groups of patients. In turn, transmission of E. gallinarum and E. faecium between the groups was suggested by the finding of vancomycin-resistant isolates belonging to the same ribogroup in both dialysis and transplant patients. The fact that these patients were colonized by VRE from the same ribogroup in the same health care facility provides evidence for cross-transmission and supports the adoption of stringent infection control measures to prevent dissemination of these bacteria.
Resumo:
Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE.
Resumo:
The objective of this study is to retrospectively report the results of interventions for controlling a vancomycin-resistant enterococcus (VRE) outbreak in a tertiary-care pediatric intensive care unit (PICU) of a University Hospital. After identification of the outbreak, interventions were made at the following levels: patient care, microbiological surveillance, and medical and nursing staff training. Data were collected from computer-based databases and from the electronic prescription system. Vancomycin use progressively increased after March 2008, peaking in August 2009. Five cases of VRE infection were identified, with 3 deaths. After the interventions, we noted a significant reduction in vancomycin prescription and use (75% reduction), and the last case of VRE infection was identified 4 months later. The survivors remained colonized until hospital discharge. After interventions there was a transient increase in PICU length-of-stay and mortality. Since then, the use of vancomycin has remained relatively constant and strict, no other cases of VRE infection or colonization have been identified and length-of-stay and mortality returned to baseline. In conclusion, we showed that a bundle intervention aiming at a strict control of vancomycin use and full compliance with the Hospital Infection Control Practices Advisory Committee guidelines, along with contact precautions and hand-hygiene promotion, can be effective in reducing vancomycin use and the emergence and spread of vancomycin-resistant bacteria in a tertiary-care PICU.