976 resultados para Multi-parameter Screen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect of income inequality on health status. A model of health status was specified in which the main variables were income level, income inequality, the level of savings and the level of education. The model was estimated using a panel data set for 44 countries covering six time periods. The results indicate that income inequality (measured by the Gini coefficient) has a significant effect on health status when we control for the levels of income, savings and education. The relationship is consistent regardless of the specification of health status and income. Thus, the study results provide some empirical support for the income inequality hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present self assessment schemes (SAS) for multiple agents performing a search mission on an unknown terrain. The agents are subjected to limited communication and sensor ranges. The agents communicate and coordinate with their neighbours to arrive at route decisions. The self assessment schemes proposed here have very low communication and computational overhead. The SAS also has attractive features like scalability to large number of agents and fast decision-making capability. SAS can be used with partial or complete information sharing schemes during the search mission. We validate the performance of SAS using simulation on a large search space consisting of 100 agents with different information structures and self assessment schemes. We also compare the results obtained using SAS with that of a previously proposed negotiation scheme. The simulation results show that the SAS is scalable to large number of agents and can perform as good as the negotiation schemes with reduced communication requirement (almost 20% of that required for negotiation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diffusion/replacement model for new consumer durables designed to be used as a long-term forecasting tool is developed. The model simulates new demand as well as replacement demand over time. The model is called DEMSIM and is built upon a counteractive adoption model specifying the basic forces affecting the adoption behaviour of individual consumers. These forces are the promoting forces and the resisting forces. The promoting forces are further divided into internal and external influences. These influences are operationalized within a multi-segmental diffusion model generating the adoption behaviour of the consumers in each segment as an expected value. This diffusion model is combined with a replacement model built upon the same segmental structure as the diffusion model. This model generates, in turn, the expected replacement behaviour in each segment. To be able to use DEMSIM as a forecasting tool in early stages of a diffusion process estimates of the model parameters are needed as soon as possible after product launch. However, traditional statistical techniques are not very helpful in estimating such parameters in early stages of a diffusion process. To enable early parameter calibration an optimization algorithm is developed by which the main parameters of the diffusion model can be estimated on the basis of very few sales observations. The optimization is carried out in iterative simulation runs. Empirical validations using the optimization algorithm reveal that the diffusion model performs well in early long-term sales forecasts, especially as it comes to the timing of future sales peaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a detailed description of the hardware design and implementation of PROMIDS: a PROtotype Multi-rIng Data flow System for functional programming languages. The hardware constraints and the design trade-offs are discussed. The design of the functional units is described in detail. Finally, we report our experience with PROMIDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faraday rotation data obtained at Delhi, Kurukshetra, Hyderabad, Bangalore, Waltair, Nagpur and Calcutta during the total solar eclipse of 16 February 1980 and at Delhi during the total solar eclipse of 31 July 1981 have been analysed to detect the gravity waves generated by a total solar eclipse as hypothesized by Chimonas and Hines (1970, J. geophys. Res. 75, 875). It has been found that gravity waves can be generated by a total solar eclipse but their detection at ionospheric heights is critically dependent on the location of the observing station in relation to the eclipse path geometry. The distance of the observing station from the eclipse path should be more than 500 km in order to detect such gravity waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joint decoding of multiple speech patterns so as to improve speech recognition performance is important, especially in the presence of noise. In this paper, we propose a Multi-Pattern Viterbi algorithm (MPVA) to jointly decode and recognize multiple speech patterns for automatic speech recognition (ASR). The MPVA is a generalization of the Viterbi Algorithm to jointly decode multiple patterns given a Hidden Markov Model (HMM). Unlike the previously proposed two stage Constrained Multi-Pattern Viterbi Algorithm (CMPVA),the MPVA is a single stage algorithm. MPVA has the advantage that it cart be extended to connected word recognition (CWR) and continuous speech recognition (CSR) problems. MPVA is shown to provide better speech recognition performance than the earlier techniques: using only two repetitions of noisy speech patterns (-5 dB SNR, 10% burst noise), the word error rate using MPVA decreased by 28.5%, when compared to using individual decoding. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the sigma factor/anti-sigma factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of sigma factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic behavior of an aero-engine failure/repair process has been analyzed from a Bayesian perspective. Number of failures/repairs in the component-sockets of this multi-component system are assumed to follow independent renewal processes with Weibull inter-arrival times. Based on the field failure/repair data of a large number of such engines and independent Gamma priors on the scale parameters and log-concave priors on the shape parameters, an exact method of sampling from the resulting posterior distributions of the parameters has been proposed. These generated parameter values are next utilised in obtaining the posteriors of the expected number of system repairs, system failure rate, and the conditional intensity function, which are computed using a recursive formula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis report attempts to improve the models for predicting forest stand structure for practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were made between Weibull and Johnson s SB distribution and alternative regression estimation methods. Data used for preliminary studies was local but the final models were based on representative data. Models were validated mainly in terms of bias and RMSE in the main stand characteristics (e.g. volume) using independent data. The bivariate SBB distribution model was used to mimic realistic variations in tree dimensions by including within-diameter-class height variation. Using the traditional method, diameter distribution with the expected height resulted in reduced height variation, whereas the alternative bivariate method utilized the error-term of the height model. The lack of models for FMP was covered to some extent by the models for peatland and juvenile stands. The validation of these models showed that the more sophisticated regression estimation methods provided slightly improved accuracy. A flexible prediction and application for stand structure consisted of seemingly unrelated regression models for eight stand characteristics, the parameters of three optional distributions and Näslund s height curve. The cross-model covariance structure was used for linear prediction application, in which the expected values of the models were calibrated with the known stand characteristics. This provided a framework to validate the optional distributions and the optional set of stand characteristics. Height distribution is recommended for the earliest state of stands because of its continuous feature. From the mean height of about 4 m, Weibull dbh-frequency distribution is recommended in young stands if the input variables consist of arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are recommended. Näslund s height curve proved useful. Some efficient transformations of stand characteristics are introduced, e.g. the shape index, which combined the basal area, the stem number and the median diameter. Shape index enabled SB model for peatland stands to detect large variation in stand densities. This model also demonstrated reasonable behaviour for stands in mineral soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel one and two dimensional NMR techniques are proposed and utilized for the determination of the signs of the order parameters used for the study of the mobility of the fatty acid chains. The experiments designed to extract this information involve the use of the intensities of the side bands in the spectra of oriented systems spinning at the magic angle. Advantages of the two dimensional technique over the one dimensional method are discussed. The utility of the method in the study of the dynamic properties of membranes and model systems is pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method was developed for relative radiometric calibration of single multitemporal Landsat TM image, several multitemporal images covering each others, and several multitemporal images covering different geographic locations. The radiometricly calibrated difference images were used for detecting rapid changes on forest stands. The nonparametric Kernel method was applied for change detection. The accuracy of the change detection was estimated by inspecting the image analysis results in field. The change classification was applied for controlling the quality of the continuously updated forest stand information. The aim was to ensure that all the manmade changes and any forest damages were correctly updated including the attribute and stand delineation information. The image analysis results were compared with the registered treatments and the stand information base. The stands with discrepancies between these two information sources were recommended to be field inspected.