994 resultados para Mucosal Damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment
methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world
structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained
challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but
there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour.This
paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour
on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation
of these parameters with respect to scour can be examined.The key novelty of this model is that it is the first numerical model for
simulating scour that combines a realistic vehicle loadingmodel with a robust foundation soil responsemodel.This paper provides a
description of the model development and explains the mathematical theory underlying themodel. Finally a case study application
of the model using typical bridge, soil, and vehicle properties is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive continuum damage mechanics model [1] had been developed to capture the detailed
behaviour of a composite structure under a crushing load. This paper explores some of the difficulties
encountered in the implementation of this model and their mitigation. The use of reduced integration
element and a strain softening model both negatively affect the accuracy and stability of the
simulation. Damage localisation effects demanded an accurate measure of characteristic length. A
robust algorithm for determining the characteristic length was implemented. Testing showed that this
algorithm produced marked improvements over the use of the default characteristic length provided
by Abaqus. Zero-energy or hourglass modes, in reduced integration elements, led to reduced
resistance to bending. This was compounded by the strain softening model, which led to the formation
of elements with little resistance to deformation that could invert if left unchecked. It was shown,
through benchmark testing, that by deleting elements with excess distortions and controlling the mesh
using inbuilt distortion/hourglass controls, these issues can be alleviated. These techniques
contributed significantly to the viability and usability of the damage model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D intralaminar continuum damage mechanics based material model, combining damage mode interaction and material nonlinearity, was developed to predict the damage response of composite structures undergoing crush loading. This model captures the structural response without the need for calibration of experimentally determined material parameters. When used in the design of energy absorbing composite structures, it can reduce the dependence on physical testing. This paper validates this model against experimental data obtained from the literature and in-house testing. Results show that the model can predict the force response of the crushed composite structures with good accuracy. The simulated energy absorption in each test case was within 12% of the experimental value. Post-crush deformation and the damage morphologies, such as ply splitting, splaying and breakage, were also accurately reproduced. This study establishes the capability of this damage model for predicting the responses of composite structures under crushing loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the latest generation of wide-body carbon-fibre composite passenger aircraft has heralded a new era in the utilisation of these materials. The premise of superior specific strength and stiffness, corrosion and fatigue resistance, is tempered by high development costs, slow production rates and lengthy and expensive certification programmes. Substantial effort is currently being directed towards the development of new modelling and simulation tools, at all levels of the development cycle, to mitigate these shortcomings. One of the primary challenges is to reduce the extent of physical testing, in the certification process, by adopting a ‘certification by simulation’ approach. In essence, this aspirational objective requires the ability to reliably predict the evolution and progression of damage in composites. The aerospace industry has been at the forefront of developing advanced composites modelling tools. As the automotive industry transitions towards the increased use of composites in mass-produced vehicles, similar challenges in the modelling of composites will need to be addressed, particularly in the reliable prediction of crashworthiness. While thermoset composites have dominated the aerospace industry, thermoplastics composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. This keynote presentation will outline recent progress and current challenges in the development of finite-element-based predictive modelling tools for capturing impact damage, residual strength and energy absorption capacity of thermoset and thermoplastic composites for crashworthiness assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage assessment of structures with a mechanical non linear model demands the representation of seismic action in terms of an accelerogram (dynamic analysis) or a response spectrum (pushover analysis). Stochastic ground motion simulation is largely used in regions where seismic strong-motion records are available in insufficient number. In this work we present a variation of the stochastic finite-fault method with dynamic corner frequency that includes the geological site effects. The method was implemented in a computer program named SIMULSIS that generate time series (accelerograms) and response spectra. The program was tested with the MW= 7.3 Landers earthquake (June 28, 1992) and managed to reproduce its effects. In the present work we used it to reproduce the effects of the 1980’s Azores earthquake (January 1, 1980) in several islands, with different possible local site conditions. In those places, the response spectra are presented and compared with the buildings damage observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mest., Estudos Marinhos e Costeiros, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia Molecular), Universidade de Lisboa, Faculdade de Ciências, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of carbon fibre reinforced laminates had widened their use, from aerospace to domestic appliances. A common characteristic is the need of drilling for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, delamination assessment methods based on radiographic data are compared and correlated with mechanical test results (bearing test).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses both experimental and numerical analyses regarding the tensile behaviour of CFRP single-strap repairs. Two fundamental geometrical parameters were studied: overlap length and patch thickness. The numerical model used ABAQUS® software and a developed cohesive mixed-mode damage model adequate for ductile adhesives, and implemented within interface finite elements. Stress analyses and strength predictions were carried out. Experimental and numerical comparisons were performed on failure modes, failure load and equivalent stiffness of the repair. Good correlation was found between experimental and numerical results, showing that the proposed model can be successfully applied to bonded joints or repairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. AcetylL-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underling its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METHtriggered MMPs’ activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.