995 resultados para Monitoring, Physiologic
Resumo:
This paper presents two new approaches for use in complete process monitoring. The firstconcerns the identification of nonlinear principal component models. This involves the application of linear
principal component analysis (PCA), prior to the identification of a modified autoassociative neural network (AAN) as the required nonlinear PCA (NLPCA) model. The benefits are that (i) the number of the reduced set of linear principal components (PCs) is smaller than the number of recorded process variables, and (ii) the set of PCs is better conditioned as redundant information is removed. The result is a new set of input data for a modified neural representation, referred to as a T2T network. The T2T NLPCA model is then used for complete process monitoring, involving fault detection, identification and isolation. The second approach introduces a new variable reconstruction algorithm, developed from the T2T NLPCA model. Variable reconstruction can enhance the findings of the contribution charts still widely used in industry by reconstructing the outputs from faulty sensors to produce more accurate fault isolation. These ideas are illustrated using recorded industrial data relating to developing cracks in an industrial glass melter process. A comparison of linear and nonlinear models, together with the combined use of contribution charts and variable reconstruction, is presented.
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.
Educational psychologists’ views on prescribing and monitoring of Ritalin in schools: a survey study
Resumo:
This paper provides an overview of the current field in wireless networks for monitoring and control. Alternative wireless technologies are introduced, together with current typical industrial applications. The focus then shifts to wireless Ethernet and the specialised requirements for wireless networked control systems (WNCS) are discussed. This is followed by a brief look at some current WNCS research, including reduced communication control.
Resumo:
This paper introduces a fast algorithm for moving window principal component analysis (MWPCA) which will adapt a principal component model. This incorporates the concept of recursive adaptation within a moving window to (i) adapt the mean and variance of the process variables, (ii) adapt the correlation matrix, and (iii) adjust the PCA model by recomputing the decomposition. This paper shows that the new algorithm is computationally faster than conventional moving window techniques, if the window size exceeds 3 times the number of variables, and is not affected by the window size. A further contribution is the introduction of an N-step-ahead horizon into the process monitoring. This implies that the PCA model, identified N-steps earlier, is used to analyze the current observation. For monitoring complex chemical systems, this work shows that the use of the horizon improves the ability to detect slowly developing drifts.
Resumo:
Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutical industry, for both process monitoring and quality control in the many stages of drug production. This paper provides an overview of CI principles, instrumentation and analysis. Recent applications of Raman and NIR-CI to pharmaceutical quality and process control are presented; challenges facing Cl implementation and likely future developments in the technology are also discussed. (C) 2007 Elsevier B.V. All rights reserved.
SP and IP Monitoring of Biogeochemical Evolution Activity of SRBs in a Simplified Winogradsky Column