938 resultados para Molecularly-imprinted sensors
Resumo:
In recent years, composite materials have revolutionized the design of many structures. Their superior mechanical properties and light weight make composites convenient over traditional metal structures for many applications. However, composite materials are susceptible to complex and challenging to predict damage behaviors due to their anisotropy nature. Therefore, structural Health Monitoring (SHM) can be a valuable tool to assess the damage and understand the physics underneath. Distributed Optical Fiber Sensors (DOFS) can be used to monitor several types of damage in composites. However, their implementation outside academia is still unsatisfactory. One of the hindrances is the lack of a rigorous methodology for uncertainty quantification, which is essential for the performance assessment of the monitoring system. The concept of Probability of Detection (POD) must function as the guiding light in this process. However, precautions must be taken since this tool was established for Non-Destructive Evaluation (NDE) rather than Structural Health Monitoring (SHM). In addition, although DOFS have been the object of numerous studies, a well-established POD methodology for their performance assessment is still missing. This thesis aims to develop a methodology to produce POD curves for DOFS in composite materials. The problem is analyzed considering several critical points, such as the strain transfer characterizing the DOFS and the development of an experimental and model-assisted methodology to understand the parameters that affect the DOFS performance.
Resumo:
A general description of the work presented in this thesis can be divided into three areas of interest: micropore fabrication, nanopore modification, and their applications. The first part of the thesis is related to the novel, reliable, cost-effective, potable, mass-productive, robust, and ease of use micropore flowcell that works based on the RPS technique. Based on our first goal, which was finding an alternate materials and processes that would shorten production times while lowering costs and improving signal quality, the polyimide film was used as a substrate to create precise pores by femtosecond laser, and the resulting current blockades of different sizes of the nanoparticles were recorded. Based on the results, the device can detecting nano-sized particles by changing the current level. The experimental and theoretical investigation, scanning electron microscopy, and focus ion beam were performed to explain the micropore's performance. The second goal was design and fabrication of a leak-free, easy-to-assemble, and portable polymethyl methacrylate flowcell for nanopore experiments. Here, ion current rectification was studied in our nanodevice. We showed a self-assembly-based, controllable, and monitorable in situ Poly(l-lysine)- g-poly(ethylene glycol) coating method under voltage-driven electrolyte flow and electrostatic interaction between nanopore walls and PLL backbones. Using designed nanopore flowcell and in situ monolayer PLL-g-PEG functionalized 20±4 nm SiN nanopores, we observed non-sticky α-1 anti-trypsin protein translocation. additionally, we could show the enhancement of translocation events through this non-sticky nanopore, and also, estimate the volume of the translocated protein. In this study, by comparing the AAT protein translocation results from functionalized and non-functionalized nanopore we demonstrated the 105 times dwell time reduction (31-0.59ms), 25% amplitude enhancement (0.24-0.3 nA), and 15 times event’s number increase (1-15events/s) after functionalization in 1×PBS at physiological pH. Also, the AAT protein volume was measured, close to the calculated AAT protein hydrodynamic volume and previous reports.
Resumo:
The most widespread work-related diseases are musculoskeletal disorders (MSD) caused by awkward postures and excessive effort to upper limb muscles during work operations. The use of wearable IMU sensors could monitor the workers constantly to prevent hazardous actions, thus diminishing work injuries. In this thesis, procedures are developed and tested for ergonomic analyses in a working environment, based on a commercial motion capture system (MoCap) made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, through sensor fusion algorithms, estimates its attitude. Effective strategies for preventing MSD rely on various aspects: firstly, the accuracy of the IMU, depending on the chosen sensor and its calibration; secondly, the correct identification of the pose of each sensor on the worker’s body; thirdly, the chosen multibody model, which must consider both the accuracy and the computational burden, to provide results in real-time; finally, the model scaling law, which defines the possibility of a fast and accurate personalization of the multibody model geometry. Moreover, the MSD can be diminished using collaborative robots (cobots) as assisted devices for complex or heavy operations to relieve the worker's effort during repetitive tasks. All these aspects are considered to test and show the efficiency and usability of inertial MoCap systems for assessing ergonomics evaluation in real-time and implementing safety control strategies in collaborative robotics. Validation is performed with several experimental tests, both to test the proposed procedures and to compare the results of real-time multibody models developed in this thesis with the results from commercial software. As an additional result, the positive effects of using cobots as assisted devices for reducing human effort in repetitive industrial tasks are also shown, to demonstrate the potential of wearable electronics in on-field ergonomics analyses for industrial applications.
Resumo:
Spectral sensors are a wide class of devices that are extremely useful for detecting essential information of the environment and materials with high degree of selectivity. Recently, they have achieved high degrees of integration and low implementation cost to be suited for fast, small, and non-invasive monitoring systems. However, the useful information is hidden in spectra and it is difficult to decode. So, mathematical algorithms are needed to infer the value of the variables of interest from the acquired data. Between the different families of predictive modeling, Principal Component Analysis and the techniques stemmed from it can provide very good performances, as well as small computational and memory requirements. For these reasons, they allow the implementation of the prediction even in embedded and autonomous devices. In this thesis, I will present 4 practical applications of these algorithms to the prediction of different variables: moisture of soil, moisture of concrete, freshness of anchovies/sardines, and concentration of gasses. In all of these cases, the workflow will be the same. Initially, an acquisition campaign was performed to acquire both spectra and the variables of interest from samples. Then these data are used as input for the creation of the prediction models, to solve both classification and regression problems. From these models, an array of calibration coefficients is derived and used for the implementation of the prediction in an embedded system. The presented results will show that this workflow was successfully applied to very different scientific fields, obtaining autonomous and non-invasive devices able to predict the value of physical parameters of choice from new spectral acquisitions.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
Time Series Analysis of multispectral satellite data offers an innovative way to extract valuable information of our changing planet. This is now a real option for scientists thanks to data availability as well as innovative cloud-computing platforms, such as Google Earth Engine. The integration of different missions would mitigate known issues in multispectral time series construction, such as gaps due to clouds or other atmospheric effects. With this purpose, harmonization among Landsat-like missions is possible through statistical analysis. This research offers an overview of the different instruments from Landsat and Sentinel missions (TM, ETM, OLI, OLI-2 and MSI sensors) and products levels (Collection-2 Level-1 and Surface Reflectance for Landsat and Level-1C and Level-2A for Sentinel-2). Moreover, a cross-sensors comparison was performed to assess the interoperability of the sensors on-board Landsat and Sentinel-2 constellations, having in mind a possible combined use for time series analysis. Firstly, more than 20,000 pairs of images almost simultaneously acquired all over Europe were selected over a period of several years. The study performed a cross-comparison analysis on these data, and provided an assessment of the calibration coefficients that can be used to minimize differences in the combined use. Four of the most popular vegetation indexes were selected for the study: NDVI, EVI, SAVI and NDMI. As a result, it is possible to reconstruct a longer and denser harmonized time series since 1984, useful for vegetation monitoring purposes. Secondly, the spectral characteristics of the recent Landsat-9 mission were assessed for a combined use with Landsat-8 and Sentinel-2. A cross-sensor analysis of common bands of more than 3,000 almost simultaneous acquisitions verified a high consistency between datasets. The most relevant discrepancy has been observed in the blue and SWIRS bands, often used in vegetation and water related studies. This analysis was supported with spectroradiometer ground measurements.
Resumo:
In this elaborate, a textile-based Organic Electrochemical Transistor (OECT) was first developed for the determination of uric acid in wound exudate based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which was then coupled to an electrochemically gated textile transistor consisting of a composite of iridium oxide particles and PEDOT:PSS for pH monitoring in wound exudate. In that way a sensor for multiparameter monitoring of wound health status was assembled, including the ability to differentiate between a wet-dry status of the smart bandage by implementing impedance measurements exploiting the OECT architecture. Afterwards, for both wound management as well as generic health status tracking applications, a glass-based calcium sensor was developed employing polymeric ion-selective membranes on a novel architecture inspired by the Wrighton OECT configuration, which was later converted to a Proof-of-Concept textile prototype for wearable applications. Lastly, in collaboration with the King Abdullah University of Science and Technology (KAUST, Thuwal, Saudi Arabia) under the supervision of Prof. Sahika Inal, different types of ion-selective thiophene-based monomers were used to develop ion-selective conductive polymers to detect sodium ion by different methods, involving standard potentiometry and OECT-based approaches. The textile OECTs for uric acid detection performances were optimized by investigating the geometry effect on the instrumental response and the properties of the different textile materials involved in their production, with a special focus on the final application that implies the operativity in flow conditions to simulate the wound environment. The same testing route was followed for the multiparameter sensor and the calcium sensor prototype, with a particular care towards the ion-selective membrane composition and electrode conditioning protocol optimization. The sodium-selective polymer electrosynthesis was optimized in non-aqueous environments and was characterized by means of potentiostatic and potentiodynamic techniques coupled with Quartz Crystal Microbalance and spectrophotometric measurements.
Resumo:
L’Electron Ion Collider (EIC) è un futuro acceleratore di particelle che ha l’obiettivo di approfondire le nostre conoscenze riguardo l’interazione forte, una delle quattro interazioni fondamentali della natura, attraverso collisioni di elettroni su nuclei e protoni. L’infrastruttura del futuro detector comprende un sistema d’identificazione basato sull’emissione di luce Cherenkov, un fenomeno che permette di risalire alla massa delle particelle. Una delle configurazioni prese in considerazione per questo sistema è il dual-radiator RICH, basato sulla presenza di due radiatori all’esterno dei quali si trovano dei fotorivelatori. Un’opzione per questi sensori sono i fotorivelatori al silicio SiPM, oggetto di questo lavoro di tesi. L’obiettivo dell’attività è lo studio di un set-up per la caratterizzazione della risposta di sensori SiPM a basse temperature, illuminati attraverso un LED. Dopo un’analisi preliminare per determinare le condizioni di lavoro, si è trovato che la misura è stabile entro un errore del 3.5%.
Resumo:
The focus of the thesis is the application of different attitude’s determination algorithms on data evaluated with MEMS sensor using a board provided by University of Bologna. MEMS sensors are a very cheap options to obtain acceleration, and angular velocity. The use of magnetometers based on Hall effect can provide further data. The disadvantage is that they have a lot of noise and drift which can affects the results. The different algorithms that have been used are: pitch and roll from accelerometer, yaw from magnetometer, attitude from gyroscope, TRIAD, QUEST, Magdwick, Mahony, Extended Kalman filter, Kalman GPS aided INS. In this work the algorithms have been rewritten to fit perfectly with the data provided from the MEMS sensor. The data collected by the board are acceleration on the three axis, angular velocity on the three axis, magnetic fields on the three axis, and latitude, longitude, and altitude from the GPS. Several tests and comparisons have been carried out installing the electric board on different vehicles operating in the air and on ground. The conclusion that can be drawn from this study is that the Magdwich filter is the best trade-off between computational capabilities required and results obtained. If attitude angles are obtained from accelerometers, gyroscopes, and magnetometer, inconsistent data are obtained for cases where high vibrations levels are noticed. On the other hand, Kalman filter based algorithms requires a high computational burden. TRIAD and QUEST algorithms doesn’t perform as well as filters.
Resumo:
The IoT is growing more and more each year and is becoming so ubiquitous that it includes heterogeneous devices with different hardware and software constraints leading to an highly fragmented ecosystem. Devices are using different protocols with different paradigms and they are not compatible with each other; some devices use request-response protocols like HTTP or CoAP while others use publish-subscribe protocols like MQTT. Integration in IoT is still an open research topic. When handling and testing IoT sensors there are some common task that people may be interested in: reading and visualizing the current value of the sensor; doing some aggregations on a set of values in order to compute statistical features; saving the history of the data to a time-series database; forecasting the future values to react in advance to a future condition; bridging the protocol of the sensor in order to integrate the device with other tools. In this work we will show the working implementation of a low-code and flow-based tool prototype which supports the common operations mentioned above, based on Node-RED and Python. Since this system is just a prototype, it has some issues and limitations that will be discussed in this work.
Resumo:
Wearable biosensors are attracting interest due to their potential to provide continuous, real-time physiological information via dynamic, non-invasive measurements of biochemical markers in biofluids, such as interstitial fluid (ISF). One notable example of their applications is for glycemic monitoring in diabetic patients, which is typically carried out either by direct measurement of blood glucose via finger pricking or by wearable sensors that can continuously monitor glucose in ISF by sampling it from below the skin with a microneedle. In this context, the development of a new and minimally invasive multisensing tattoo-based platform for the monitoring of glucose and other analytes in ISF extracted through reverse iontophoresis in proposed by the GLUCOMFORT project. This elaborate describes the in-vitro development of flexible electrochemical sensors based on inkjet-printed PEDOT:PSS and metal inks that are capable of determining glucose and chloride at biologically relevant concentrations, making them good candidates for application in the GLUCOMFORT platform. In order to make PEDOT:PSS sensitive to glucose at micromolar concentrations, a biocompatible functionalization based on immobilized glucose oxidase and electrodeposited platinum was developed. This functionalization was successfully applied to bulk and flexible amperometric devices, the design of which was also optimized. Using the same strategy, flexible organic electrochemical transistors (OECTs) for glucose sensing were also made and successfully tested. For the sensing of chloride ions, an organic charge-modulated field-effect transistor (OCMFET) featuring a silver/silver chloride modified floating gate electrode was developed and tested.
Resumo:
The increasing number of extreme rainfall events, combined with the high population density and the imperviousness of the land surface, makes urban areas particularly vulnerable to pluvial flooding. In order to design and manage cities to be able to deal with this issue, the reconstruction of weather phenomena is essential. Among the most interesting data sources which show great potential are the observational networks of private sensors managed by citizens (crowdsourcing). The number of these personal weather stations is consistently increasing, and the spatial distribution roughly follows population density. Precisely for this reason, they perfectly suit this detailed study on the modelling of pluvial flood in urban environments. The uncertainty associated with these measurements of precipitation is still a matter of research. In order to characterise the accuracy and precision of the crowdsourced data, we carried out exploratory data analyses. A comparison between Netatmo hourly precipitation amounts and observations of the same quantity from weather stations managed by national weather services is presented. The crowdsourced stations have very good skills in rain detection but tend to underestimate the reference value. In detail, the accuracy and precision of crowd- sourced data change as precipitation increases, improving the spread going to the extreme values. Then, the ability of this kind of observation to improve the prediction of pluvial flooding is tested. To this aim, the simplified raster-based inundation model incorporated in the Saferplaces web platform is used for simulating pluvial flooding. Different precipitation fields have been produced and tested as input in the model. Two different case studies are analysed over the most densely populated Norwegian city: Oslo. The crowdsourced weather station observations, bias-corrected (i.e. increased by 25%), showed very good skills in detecting flooded areas.
Resumo:
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.
Resumo:
Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.
Resumo:
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.