965 resultados para Modulation of effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fecal water (FW) has been shown to exert, in cultured cells, cytotoxic and genotoxic effects that have implications for colorectal cancer (CRC) risk. We have investigated a further biological activity of FW, namely, the ability to affect gap junctions in CACO2 cell monolayers as an index of mucosal barrier function, which is known to be disrupted in cancer. FW samples fi-om healthy, free-living, European subjects that were divided into two broad age groups, adult (40 +/- 9.7 yr; n = 53) and elderly (76 +/- 7.5 yr; n = 55) were tested for effects on gap junction using the transepithelial resistance (TER) assay. Overall, treatment of CACO2 cells with FW samples fi-om adults increased TER (+ 4 %), whereas FW from elderly subjects decreased TER (-5%); the difference between the two groups was significant (P < 0.05). We also measured several components of FW potentially associated with modulation of TER, namely, short-chain fatty acid (SCFA) and ammonia. SCFAs (propionic, acetic, and n-butyric) were significantly lower in the elderly population (-30%, -35%, and -21%, respectively, all P pound 0.01). We consider that FW modulation of in vitro epithelial barrier function is a potentially useful noninvasive biomarker, but it requires further validation to establish its relationship to CRC risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish and fish oil-rich sources of long-chain n-3 fatty acids have been shown to be cardio-protective, through a multitude of different pathways including effects on arrythymias, endothelial function, inflammation and thrombosis, as well as modulation of both the fasting and postprandial blood lipid profile. To date the majority of studies have examined the impact of EPA and DHA fed simultaneously as fish or fish oil supplements. However, a number of recent studies have compared the relative biopotency of EPA v. DHA in relation to their effect on blood lipid levels. Although many beneficial effects of fish oils have been demonstrated, concern exists about the potential deleterious impact of EPA and DHA on LDL-cholesterol, with a highly-heterogenous response of this lipid fraction reported in the literature. Recent evidence suggests that apoE genotype may be in part responsible. In the present review the impact of EPA and DHA on cardiovascular risk and the blood lipoprotein profile will be considered, with a focus on the apoE gene locus as a possible determinant of lipid responsiveness to fish oil intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H2O2-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H2O2 cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H2O2 cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways. (c) 2006 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rational for this review is to provide a coherent formulation of the cognitive neurochemistry of nicotine, with the aim of suggesting research and clinical applications. The first part is a comprehensive review of the empirical studies of the enhancing effects of nicotine on information processing, especially those on attentional and mnemonic processing. Then, these studies are put in the context of recent studies on the neurochemistry of nicotine and cholinergic drugs, in general. They suggest a positive effect of nicotine on processes acting on encoded material during the post acquisition phase, the process of consolidation. Thus, the involvement of nicotinic receptors in mnemonic processing is modulation of the excitability of neurons in the hippocampal formation to enable associative processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Little is known about the relative effects of exposure to postnatal depression and parental conflict on the social functioning of school-aged children. This is, in part, because of a lack of specificity in the measurement of child and parental behaviour and a reliance on children's reports of their hypothetical responses to conflict in play. Methods In the course of a prospective longitudinal study of children of postnatally depressed and well women, 5-year-old children were videotaped at home with a friend in a naturalistic dressing-up play setting. As well as examining possible associations between the occurrence of postnatal depression and the quality of the children's interactions, we investigated the influence of parental conflict and co-operation, and the continuity of maternal depression. The quality of the current mother-child relationship was considered as a possible mediating factor. Results Exposure to postnatal depression was associated with increased likelihood, among boys, of displaying physical aggression in play with their friend. However, parental conflict mediated the effects of postnatal depression on active aggression during play, and was also associated with displays of autonomy and intense conflict. While there were no gender effects in terms of the degree or intensity of aggressive behaviours, girls were more likely to express aggression verbally using denigration and gloating whereas boys were more likely to display physical aggression via interpersonal and object struggles. Conclusions The study provided evidence for the specificity of effects, with strong links between parental and child peer conflict. These effects appear to arise from direct exposure to parental conflict, rather than indirectly, through mother-child interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population studies have shown a positive correlation between diets rich in whole grains and a reduced risk of developing metabolic diseases, like diabetes, cardiovascular disease, and certain cancers. However, little is known about the mechanisms of action, particularly the impact different fermentable components of whole grains have on the human intestinal microbiota. The modulation of microbial populations by whole grain wheat flakes and the effects of toasting on digestion and subsequent fermentation profile were evaluated. Raw, partially toasted, and toasted wheat flakes were digested using simulated gastric and small intestinal conditions and then fermented using 24-hour, pH-controlled, anaerobic batch cultures inoculated with human feces. Major bacterial groups and production of short-chain fatty acids were compared with those for the prebiotic oligofructose and weakly fermented cellulose. Within treatments, a significant increase (P<.05) in bifidobacteria numbers was observed upon fermentation of all test carbohydrates, with the exception of cellulose. Toasting appeared to have an effect on growth of lactobacilli as only fermentation of raw wheat flakes resulted in a significant increase in levels of this group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumption of anthocyanins has been related with beneficial health effects. However, bioavailability studies have shown low concentration of anthocyanins in plasma and urine. In this study, we have investigated the bacterial-dependent metabolism of malvidin-3-glucoside, gallic acid and a mixture of anthocyanins using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal human large intestine conditions. Most anthocyanins have disappeared after 5 h incubation while gallic acid remained constant through the first 5 h and was almost completely degraded following 24 h of fermentation. Incubation of malvidin-3-glucoside with fecal bacteria mainly resulted in the formation of syringic acid, while the mixture of anthocyanins resulted in formation of gallic, syringic and p-coumaric acids. All the anthocyanins tested enhanced significantly the growth of Bif idobacterium spp. and Lactobacillus−Enterococcus spp. These results suggest that anthocyanins and their metabolites may exert a positive modulation of the intestinal bacterial population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probiotic bacteria are live microbial food ingredients that provide a health benefit to the consumer. In the past it was suggested that they served to benefit the host primarily through the prevention of intestinal infections. More recent studies have implicated probiotic bacteria in a number of other beneficial effects within the host including: *The suppression of allergies. *Control of blood cholesterol levels. *Modulation of immune function. *And the prevention of cancers of the colon. The reputed anti-carcinogenic effect of probiotics arises from in vivo studies in both animals and to a limited extent in man; this evidence is supported by in vitro studies with carcinoma cell lines and anti-mutagenicity assays. However, the mechanisms involved in any effect have thus far been difficult to elucidate; studies offer evidence for a variety of mechanisms; we have reviewed these and come to the opinion that, the anti-carcinogenic effect may not be attributable to a single mechanism but rather to a combination of events not yet fully elucidated or understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small, synthetic peptides based on specific regions of voltage-gated Ca2+ channels (VGCCs) have been widely used to study Ca2+ channel function and have been instrumental in confirming the contribution of specific amino acid sequences to interactions with putative binding partners. In particular, peptides based on the Ca2+ channel Alpha Interaction Domain (AID) on the intracellular region connecting domains I and II (the I-II loop) and the SYNaptic PRotein INTerction (synprint) site on the II-III loop have been widely used. Emerging evidence suggests that such peptides may themselves possess inherent functionality, a property that may be exploitable for future drug design. Here, we review our recent work using synthetic Ca2+ channel peptides based on sequences within the CaV2.2 amino terminal and I-II loop, originally identified as molecular determinates for G protein modulation, and their effects on VGCC function. These CaV2.2 peptides act as inhibitory modules to decrease Ca2+ influx with direct effects on VGCC gating, ultimately leading to a reduction of synaptic transmission. CaV2.2 peptides also attenuate G protein modulation of VGCCs. Amino acid substitutions generate CaV2.2 peptides with increased or decreased inhibitory effects suggesting that synthetic peptides can be used to further probe VGCC function and, potentially, form the basis for novel therapeutic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key point summary • Cerebellar ataxias are progressive debilitating diseases with no known treatment and are associated with defective motor function and, in particular, abnormalities to Purkinje cells. • Mutant mice with deficits in Ca2+ channel auxiliary α2δ-2 subunits are used as models of cerebellar ataxia. • Our data in the du2J mouse model shows an association between the ataxic phenotype exhibited by homozygous du2J/du2J mice and increased irregularity of Purkinje cell firing. • We show that both heterozygous +/du2J and homozygous du2J/du2J mice completely lack the strong presynaptic modulation of neuronal firing by cannabinoid CB1 receptors which is exhibited by litter-matched control mice. • These results show that the du2J ataxia model is associated with deficits in CB1 receptor signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity due to reduced α2δ-2 subunit expression. Knowledge of such deficits may help design therapeutic agents to combat ataxias. Abstract Cerebellar ataxias are a group of progressive, debilitating diseases often associated with abnormal Purkinje cell (PC) firing and/or degeneration. Many animal models of cerebellar ataxia display abnormalities in Ca2+ channel function. The ‘ducky’ du2J mouse model of ataxia and absence epilepsy represents a clean knock-out of the auxiliary Ca2+ channel subunit, α2δ-2, and has been associated with deficient Ca2+ channel function in the cerebellar cortex. Here, we investigate effects of du2J mutation on PC layer (PCL) and granule cell (GC) layer (GCL) neuronal spiking activity and, also, inhibitory neurotransmission at interneurone-Purkinje cell(IN-PC) synapses. Increased neuronal firing irregularity was seen in the PCL and, to a less marked extent, in the GCL in du2J/du2J, but not +/du2J, mice; these data suggest that the ataxic phenotype is associated with lack of precision of PC firing, that may also impinge on GC activity and requires expression of two du2J alleles to manifest fully. du2J mutation had no clear effect on spontaneous inhibitory postsynaptic current (sIPSC) frequency at IN-PC synapses, but was associated with increased sIPSC amplitudes. du2J mutation ablated cannabinoid CB1 receptor (CB1R)-mediated modulation of spontaneous neuronal spike firing and CB1Rmediated presynaptic inhibition of synaptic transmission at IN-PC synapses in both +/du2J and du2J/du2J mutants; effects that occurred in the absence of changes in CB1R expression. These results demonstrate that the du2J ataxia model is associated with deficient CB1R signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity and the ataxic phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T-type Ca2+ channels play diverse roles in tissues such as sensory neurons, vascular smooth muscle, and cancers, where increased expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1) is often found. Here, we report regulation of T-type Ca2+ channels by carbon monoxide (CO) a HO-1 by-product. CO (applied as CORM-2) caused a concentration-dependent, poorly reversible inhibition of all T-type channel isoforms (Cav3.1-3.3, IC50 ∼3 μM) expressed in HEK293 cells, and native T-type channels in NG108-15 cells and primary rat sensory neurons. No recognized CO-sensitive signaling pathway could account for the CO inhibition of Cav3.2. Instead, CO sensitivity was mediated by an extracellular redox-sensitive site, which was also highly sensitive to thioredoxin (Trx). Trx depletion (using auranofin, 2-5 μM) reduced Cav3.2 currents and their CO sensitivity by >50% but increased sensitivity to dithiothreitol ∼3-fold. By contrast, Cav3.1 and Cav3.3 channels, and their sensitivity to CO, were unaffected in identical experiments. Our data propose a novel signaling pathway in which Trx acts as a tonic, endogenous regulator of Cav3.2 channels, while HO-1-derived CO disrupts this regulation, causing channel inhibition. CO modulation of T-type channels has widespread implications for diverse physiological and pathophysiological mechanisms, such as excitability, contractility, and proliferation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The low expression polymorphism of the MAOA gene in interaction with adverse environments (G × E) is associated with antisocial behaviour disorders. These have their origins in early life, but it is not known whether MAOA G × E occurs in infants. We therefore examined whether MAOA G × E predicts infant anger proneness, a temperamental dimension associated with later antisocial behaviour disorders. In contrast to previous studies, we examined MAOA G × E prospectively using an observational measure of a key aspect of the infant environment, maternal sensitivity, at a specified developmental time point. Methods In a stratified epidemiological cohort recruited during pregnancy, we ascertained MAOA status (low vs. high expression alleles) from the saliva of 193 infants, and examined specific predictions to maternal report of infant temperament at 14 months from maternal sensitivity assessed at 29 weeks of age. Results Analyses, weighted to provide general population estimates, indicated a robust interaction between MAOA status and maternal sensitivity in the prediction of infant anger proneness (p = .003) which became stronger once possible confounders for maternal sensitivity were included in the model (p = .0001). The interaction terms were similar in males (p = .010) and females (p = .016), but the effects were different as a consequence of an additional sex of infant by maternal sensitivity interaction. Conclusions This prospective study provides the first evidence of moderation by the MAOA gene of effects of parenting on infant anger proneness, an important early risk for the development of disruptive and aggressive behaviour disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD’s beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular phar- macology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD’s relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeu- tics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent with modulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug’s action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD’s effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD’s therapeutic mechanism of action.