994 resultados para Mode lock
Resumo:
We report an LD side-pumped continuous-wave passive mode-locked Nd:YAG laser with a Z-type folded cavity based on a semiconductor saturable absorber mirror (SESAM). The average output power 2.95 W of mode-locked laser with electro-optical conversion efficiency of 1.3% and high beam quality (M-x(2) = 1.25 and M-y(2) = 1.22) is achieved. The repetition rate of mode-locked pulse of 88 MHz with pulse energy of 34 nJ is obtained.
Resumo:
We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 mu m wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.
Theoretical Design of Low-loss Single-Polarization Single-Mode Microstructured Polymer optical Fiber
Resumo:
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.
Resumo:
Based on improving the wake-oscillator model, an analytical model for vortex-induced vibration (VIV) of flexible riser under non-uniform current is presented, in which the variation of added mass at lock-in and the nonlinear relationship between amplitude of response and reduced velocity are considered. By means of empirical formula combining iteration computation, the improved analytical model can be conveniently programmed into computer code with simpler and faster computation process than CFD so as to be suitable to application of practical engineering. This model is validated by comparing with experimental result and numerical simulation. Our results show that the improved model can predict VIV response and lock-in region more accurately. At last, illustrative examples are given in which the amplitude of response of flexible riser experiencing VIV under action of non-uniform current is calculated and effects of riser tension and flow distribution along span of riser are explored. It is demonstrated that with the variation of tension and flow distribution, lock-in region of mode behaves in different way, and thus the final response is a synthesis of response of locked modes.
Resumo:
IEECAS SKLLQG
Resumo:
A new SSC (Separated Sector Cyclotron)-Linac is being designed to serve as an injector for the SSC at the HIRFL (Heavy Ion Research Facility Lanzhou). The beam intensity at the LEBT (Low Energy Beam Transport) for the heavy ions after the selection is typically low and the space charge effects are inconspicuous. The space charge effects become obvious when the beam current increases to a few hundred microamperes. The emittance growth deriving from the space charge effects may be particularly troublesome for the following linac and cyclotron. An optical system containing three solenoids has been designed for the LEBT to limit the beam emittance and to avoid the unnecessary beam loss in the cyclotron, as well as for the purpose of immunizing the LEBT emittance growth due to the space charge effects. The results of the PIG (Particle-In-Cell) mode simulation illustrate that this channel could limit the beam emittance growth and increase the beam brightness.