935 resultados para Mobile technologies
Resumo:
Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
The aim of this study was to explore adherence to treatment among people with psychotic disorders through the development of user-centered mobile technology (mHealth) intervention. More specifically, this study investigates treatment adherence as well as mHealth intervention and the factors related to its possible usability. The data were collected from 2010 to 2013. First, patients’ and professionals’ perceptions of adherence management and restrictive factors of adherence were described (n = 61). Second, objectives and methods of the intervention were defined based on focus group interviews and previously used methods. Third, views of patients and professionals about barriers and requirements of the intervention were described (n = 61). Fourth, mHealth intervention was evaluated based on a literature review (n = 2) and patients preferences regarding the intervention (n = 562). Adherence management required support in everyday activities, social networks and maintaining a positive outlook. The factors restricting adherence were related to illness, behavior and the environment. The objective of the intervention was to support the intention to follow the treatment guidelines and recommendations with mHealth technology. The barriers and requirements for the use of the mHealth were related to technology, organizational issues and the users themselves. During the course of the intervention, 33 (6%) out of 562 participants wanted to edit the content, timing or amount of the mHealth tool, and 23 (4%) quit the intervention or study before its conclusion. According to the review, mHealth interventions were ineffective in promoting adherence. Prior to the intervention, participants perceived that adherence could be supported, and the use of mHealth as a part of treatment was seen as an acceptable and efficient method for doing so. In conclusion, the use of mHealth may be feasible among people with psychotic disorders. However, clear evidence for its effectiveness in regards to adherence is still currently inconclusive.
Resumo:
Human-Centered Design (HCD) is a well-recognized approach to the design of interactive computing systems that supports everyday and professional lives of people. To that end, the HCD approach put central emphasis on the explicit understanding of users and context of use by involving users throughout the entire design and development process. With mobile computing, the diversity of users as well as the variety in the spatial, temporal, and social settings of the context of use has notably expanded, which affect the effort of interaction designers to understand users and context of use. The emergence of the mobile apps era in 2008 as a result of structural changes in the mobile industry and the profound enhanced capabilities of mobile devices, further intensify the embeddedness of technology in the daily life of people and the challenges that interaction designers face to cost-efficiently understand users and context of use. Supporting interaction designers in this challenge requires understanding of their existing practice, rationality, and work environment. The main objective of this dissertation is to contribute to interaction design theories by generating understanding on the HCD practice of mobile systems in the mobile apps era, as well as to explain the rationality of interaction designers in attending to users and context of use. To achieve that, a literature study is carried out, followed by a mixed-methods research that combines multiple qualitative interview studies and a quantitative questionnaire study. The dissertation contributes new insights regarding the evolving HCD practice at an important time of transition from stationary computing to mobile computing. Firstly, a gap is identified between interaction design as practiced in research and in the industry regarding the involvement of users in context; whereas the utilization of field evaluations, i.e. in real-life environments, has become more common in academic projects, interaction designers in the industry still rely, by large, on lab evaluations. Secondly, the findings indicate on new aspects that can explain this gap and the rationality of interaction designers in the industry in attending to users and context; essentially, the professional-client relationship was found to inhibit the involvement of users, while the mental distance between practitioners and users as well as the perceived innovativeness of the designed system are suggested in explaining the inclination to study users in situ. Thirdly, the research contributes the first explanatory model on the relation between the organizational context and HCD; essentially, innovation-focused organizational strategies greatly affect the cost-effective usage of data on users and context of use. Last, the findings suggest a change in the nature of HCD in the mobile apps era, at least with universal consumer systems; evidently, the central attention on the explicit understanding of users and context of use shifts from an early requirements phase and continual activities during design and development to follow-up activities. That is, the main effort to understand users is by collecting data on their actual usage of the system, either before or after the system is deployed. The findings inform both researchers and practitioners in interaction design. In particular, the dissertation suggest on action research as a useful approach to support interaction designers and further inform theories on interaction design. With regard to the interaction design practice, the dissertation highlights strategies that encourage a more cost-effective user- and context-informed interaction design process. With the continual embeddedness of computing into people’s life, e.g. with wearable devices and connected car systems, the dissertation provides a timely and valuable view on the evolving humancentered design.
Resumo:
The review of intelligent machines shows that the demand for new ways of helping people in perception of the real world is becoming higher and higher every year. This thesis provides information about design and implementation of machine vision for mobile assembly robot. The work has been done as a part of LUT project in Laboratory of Intelligent Machines. The aim of this work is to create a working vision system. The qualitative and quantitative research were done to complete this task. In the first part, the author presents the theoretical background of such things as digital camera work principles, wireless transmission basics, creation of live stream, methods used for pattern recognition. Formulas, dependencies and previous research related to the topic are shown. In the second part, the equipment used for the project is described. There is information about the brands, models, capabilities and also requirements needed for implementation. Although, the author gives a description of LabVIEW software, its add-ons and OpenCV which are used in the project. Furthermore, one can find results in further section of considered thesis. They mainly represented by screenshots from cameras, working station and photos of the system. The key result of this thesis is vision system created for the needs of mobile assembly robot. Therefore, it is possible to see graphically what was done on examples. Future research in this field includes optimization of the pattern recognition algorithm. This will give less response time for recognizing objects. Presented by author system can be used also for further activities which include artificial intelligence usage.
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.
Resumo:
Vineyards vary over space and time, making geomatics technologies ideally suited to study terroir. This study applied geomatics technologies - GPS, remote sensing and GIS - to characterize the spatial variability at Stratus Vineyards in the Niagara Region. The concept of spatial terroir was used to visualize, monitor and analyze the spatial and temporal variability of variables that influence grape quality. Spatial interpolation and spatial autocorrelation were used to measure the pattern demonstrated by soil moisture, leaf water potential, vine vigour, soil composition and grape composition on two Cabernet Franc blocks and one Chardonnay block. All variables demonstrated some spatial variability within and between the vineyard block and over time. Soil moisture exhibited the most significant spatial clustering and was temporally stable. Geomatics technologies provided valuable spatial information related to the natural spatial variability at Stratus Vineyards and can be used to inform and influence vineyard management decisions.
Resumo:
Abstract This study was undertaken to examine traditional forms of literacy and the newest form of literacy: technology. Students who have trouble reading traditional forms of literacy tend to have lower self-esteem. This research intended to explore if students with reading difficulties and, therefore, lower self-esteem, could use Social Networking Technologies including text messaging, Facebook, email, blogging, MySpace, or Twitter to help improve their self-esteem, in a field where spelling mistakes and grammatical errors are commonplace, if not encouraged. A collective case study was undertaken based on surveys, individual interviews, and gathered documents from 3 students 9-13 years old. The data collected in this study were analyzed and interpreted using qualitative methods. These cases were individually examined for themes, which were then analyzed across the cases to examine points of convergence and divergence in the data. The research found that students with reading difficulties do not necessarily have poor self-esteem, as prior research has suggested (Carr, Borkowski, & Maxwell, 1991; Feiler, & Logan, 2007; Meece, Wigfield, & Eccles, 1990; Pintirch & DeGroot, 1990; Pintrich & Garcia, 1991). All of the participants who had reading difficulties, were found both through interviews and the CFSEI-3 self-esteem test (Battle, 2002) to have average self-esteem, although their parents all stated that their child felt poorly about their academic abilities. The research also found that using Social Networking Technologies helped improve the self-esteem of the majority of the participants both socially and academically.
Resumo:
This mixed methods research explores the role of reading engagement in 30 grade 1 students’ motivation to read mobile electronic storybooks (eBooks) and cognitive strategies used during eBook reading. Data collection comprised motivation and parent questionnaires, behavioural observation checklists, cognitive strategies rubric, and teacher interviews. Students’ emotional engagement with and enjoyment of mobile eBooks corresponded to 4 motivational aspects of intrinsic motivation: curiosity, control, choice, and challenge. Post-intervention results indicated that most student participants enjoyed answering eBook comprehension questions and preferred eBooks to print books; by the end of the study, all had access to a mobile device at home. A majority of participants were actively engaged during mobile eBook reading sessions and persisted in answering embedded eBook comprehension questions, which together reflected students’ behavioural engagement and time-on-task during mobile reading. Students’ off-task behaviours related to iPads’ accessibility features and inherent reader-friendliness. All participants successfully answered evaluative questions requiring them to activate prior knowledge, and experienced higher levels of difficulty with making personal connections. The study highlights the importance of making school-based literacy practices relevant to students’ outside worlds, and discusses implications for teacher educators, administrators, curriculum developers, and eBook and other digital developers concerning the need for greater collaboration in order to more closely align technology resources with national curriculum expectations.