972 resultados para Missions, Danish.
Resumo:
Cette note présente des résultats de deux importants sondages menés en parallèle dans les deux pays. Au Canada, nos données sont tirées du plus récent Canadian Survey on Energy and the Environment (CSEE, Lachapelle et al. 2015) et aux États-Unis, nous rapportons les résultats du National Survey on Energy and the Environment (NSEE). Réalisés au mois de septembre 2015, ces deux sondages ont soumis les mêmes questions à des échantillons représentatifs des populations du Canada et des États-Unis.
Resumo:
In Safety critical software failure can have a high price. Such software should be free of errors before it is put into operation. Application of formal methods in the Software Development Life Cycle helps to ensure that the software for safety critical missions are ultra reliable. PVS theorem prover, a formal method tool, can be used for the formal verification of software in ADA Language for Flight Software Application (ALFA.). This paper describes the modeling of ALFA programs for PVS theorem prover. An ALFA2PVS translator is developed which automatically converts the software in ALFA to PVS specification. By this approach the software can be verified formally with respect to underflow/overflow errors and divide by zero conditions without the actual execution of the code.
Resumo:
In Safety critical software failure can have a high price. Such software should be free of errors before it is put into operation. Application of formal methods in the Software Development Life Cycle helps to ensure that the software for safety critical missions are ultra reliable. PVS theorem prover, a formal method tool, can be used for the formal verification of software in ADA Language for Flight Software Application (ALFA.). This paper describes the modeling of ALFA programs for PVS theorem prover. An ALFA2PVS translator is developed which automatically converts the software in ALFA to PVS specification. By this approach the software can be verified formally with respect to underflow/overflow errors and divide by zero conditions without the actual execution of the code
Resumo:
Die Dissertation beschäftigt sich mit der komparativen Analyse der deutschen und französischen Innovationssysteme. Ausgehend von der evolutorisch-orientierten Innovationsforschung und der Institutionenökonomik werden die Akteure und deren Interaktionen in den jeweiligen institutionellen Rahmenbedingungen in beiden Innovationssystemen untersucht. Die Arbeit beleuchtet dieses Thema aus verschiedenen Perspektiven und zeichnet sich durch ein breites Methodenspektrum aus. Die Grenzen und Defizite des linearen Innovationsmodells werden aufgezeigt und für ein systemisches, interaktives Verständnis der Entstehung von Innovationen plädiert. Dieses interaktive Modell wird auf die Ebene des nationalen Innovationssystems transponiert, und damit wird der konzeptionelle Rahmen für die weitere Analyse geschaffen. Für die Gestaltung der Innovationssysteme wird die Bedeutung der institutionellen Konfigurationen betont, die von den Innovationsakteuren gewählt werden. Hierfür werden jeweils die Fallbeispiele Frankreich und Deutschland ausführlich untersucht und nach der gleichen Systematik empirisch betrachtet und schließlich werden beide Innovationssysteme systematisch verglichen. Dabei wird auch auf die Pfadabhängigkeiten in beiden Innovationssystemen eingegangen, sowie auf die Notwendigkeit der Berücksichtigung kultureller und historischer Eigenarten der verglichenen Länder. Expertengespräche mit deutschen und französischen Experten, ergänzen die zuvor erzielten Ergebnisse der Arbeit: Durch eine interdisziplinäre Herangehensweise werden politikwissenschaftliche und ökonomische Ansätze miteinander verknüpft, sowie kulturelle Eigenarten berücksichtigt, die Innovationssysteme beeinflussen können. In seinen Schlussfolgerungen kommt der Verfasser zu dem Ergebnis, dass „lernende Politik“ über institutionellen Wandel und Wissenstransfer ein wichtiger Faktor bei der Gestaltung hybrider Institutionen und der staatlichen Innovationspolitik von der „Missions- zur Diffusionsorientierung“ hin ist. Die Betrachtung zweier nationaler Systeme sowie deren Einbindung in internationale Kontexte führt zum Ergebnis, dass die Steuerung der Schnittstelle „Forschung-Industrie“, insbesondere die Rolle der Universitäten und Forschungseinrichtungen in heterogenen Kooperationspartnerschaften, über neue forschungs-und technologiepolitische Instrumente über transnationales Lernen von Institutionen geschehen kann. Dieser institutionelle Wandel wird als Lernprozess betrachtet, der im Übergang zur wissensbasierten Wirtschaft als “comparative institutional advantage“ ein wichtiger Faktor bei der Gestaltung der Institutionen und der staatlichen Technologiepolitik ist.
Resumo:
In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.
Resumo:
As exploration of our solar system and outerspace move into the future, spacecraft are being developed to venture on increasingly challenging missions with bold objectives. The spacecraft tasked with completing these missions are becoming progressively more complex. This increases the potential for mission failure due to hardware malfunctions and unexpected spacecraft behavior. A solution to this problem lies in the development of an advanced fault management system. Fault management enables spacecraft to respond to failures and take repair actions so that it may continue its mission. The two main approaches developed for spacecraft fault management have been rule-based and model-based systems. Rules map sensor information to system behaviors, thus achieving fast response times, and making the actions of the fault management system explicit. These rules are developed by having a human reason through the interactions between spacecraft components. This process is limited by the number of interactions a human can reason about correctly. In the model-based approach, the human provides component models, and the fault management system reasons automatically about system wide interactions and complex fault combinations. This approach improves correctness, and makes explicit the underlying system models, whereas these are implicit in the rule-based approach. We propose a fault detection engine, Compiled Mode Estimation (CME) that unifies the strengths of the rule-based and model-based approaches. CME uses a compiled model to determine spacecraft behavior more accurately. Reasoning related to fault detection is compiled in an off-line process into a set of concurrent, localized diagnostic rules. These are then combined on-line along with sensor information to reconstruct the diagnosis of the system. These rules enable a human to inspect the diagnostic consequences of CME. Additionally, CME is capable of reasoning through component interactions automatically and still provide fast and correct responses. The implementation of this engine has been tested against the NEAR spacecraft advanced rule-based system, resulting in detection of failures beyond that of the rules. This evolution in fault detection will enable future missions to explore the furthest reaches of the solar system without the burden of human intervention to repair failed components.
Resumo:
Research on autonomous intelligent systems has focused on how robots can robustly carry out missions in uncertain and harsh environments with very little or no human intervention. Robotic execution languages such as RAPs, ESL, and TDL improve robustness by managing functionally redundant procedures for achieving goals. The model-based programming approach extends this by guaranteeing correctness of execution through pre-planning of non-deterministic timed threads of activities. Executing model-based programs effectively on distributed autonomous platforms requires distributing this pre-planning process. This thesis presents a distributed planner for modelbased programs whose planning and execution is distributed among agents with widely varying levels of processor power and memory resources. We make two key contributions. First, we reformulate a model-based program, which describes cooperative activities, into a hierarchical dynamic simple temporal network. This enables efficient distributed coordination of robots and supports deployment on heterogeneous robots. Second, we introduce a distributed temporal planner, called DTP, which solves hierarchical dynamic simple temporal networks with the assistance of the distributed Bellman-Ford shortest path algorithm. The implementation of DTP has been demonstrated successfully on a wide range of randomly generated examples and on a pursuer-evader challenge problem in simulation.
Resumo:
Autonomous vehicles are increasingly being used in mission-critical applications, and robust methods are needed for controlling these inherently unreliable and complex systems. This thesis advocates the use of model-based programming, which allows mission designers to program autonomous missions at the level of a coach or wing commander. To support such a system, this thesis presents the Spock generative planner. To generate plans, Spock must be able to piece together vehicle commands and team tactics that have a complex behavior represented by concurrent processes. This is in contrast to traditional planners, whose operators represent simple atomic or durative actions. Spock represents operators using the RMPL language, which describes behaviors using parallel and sequential compositions of state and activity episodes. RMPL is useful for controlling mobile autonomous missions because it allows mission designers to quickly encode expressive activity models using object-oriented design methods and an intuitive set of activity combinators. Spock also is significant in that it uniformly represents operators and plan-space processes in terms of Temporal Plan Networks, which support temporal flexibility for robust plan execution. Finally, Spock is implemented as a forward progression optimal planner that walks monotonically forward through plan processes, closing any open conditions and resolving any conflicts. This thesis describes the Spock algorithm in detail, along with example problems and test results.
Resumo:
When discussing the traditional and new missions of higher education (1996 Report to UNESCO of the International Commission on Education for the 21st Century) Jacques Delors stated that "Excessive attraction to social sciences has broken equilibrium of available graduates for workforce, thus causing doubts of graduates and employers on the quality of knowledge provided by higher education". Likewise, when discussing the progress of science and technology, the 1998 UNESCO World Conference on Higher Education concluded that "Another challenge concerts the latest advancements of Science, the sine qua non of sustainable development"; and that “with Information Technology, the unavoidable invasion of virtual reality has increased the distance between industrial and developing countries". Recreational Science has a long tradition all over the Educational World; it aims to show the basic aspects of Science, aims to entertain, and aims to induce thinking. Until a few years ago, this field of knowledge consisted of a few books, a few kits and other classical (yet innovative) ways to popularize the knowledge of Nature and the laws governing it. In Spain, the interest for recreational science has increased in the last years. First, new recreational books are being published and found in bookstores. Second the number of Science-related museums and exhibits is increasing. And third, new television shows are produced and new short science-based, superficial sketches are found in variety programs. However, actual programs in Spanish television dealing seriously with Science are scarce. Recreational Science, especially that related to physical phenomena like light or motion, is generally found at Science Museums because special equipment is required. On the contrary, Science related mathematics, quizzes and puzzles use to gather into books, e.g. the extensive collections by Martin Gardner. However, lately Science podcasts have entered the field of science communication. Not only traditional science journals and television channels are providing audio and video podcasts, but new websites deal exclusively with science podcasts, in particular on Recreational Science. In this communication we discuss the above mentioned trends and show our experience in the last two years in participating at Science Fairs and university-sponsored events to attract students to science and technology careers. We show a combination of real examples (e.g., mathemagic), imagination, use of information technology, and use of social networks. We present as well an experience on designing a computational, interactive tool to promote chemistry among high school, prospective students using computers ("Dancing with Bionanomolecules"). Like the concepts related to Web 2.0, it has been already proposed that a new framework for communication of science is emerging, i.e., Science Communication 2.0, where people and institutions develop new innovative ways to explain science topics to diverse publics – and where Recreational Science is likely to play a leading role
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture
Resumo:
This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment
Resumo:
El análisis micropolítico de los Discursos Bibliotecarios (DB) desinviste a las maquinas codificadoras de las misiones, que la institución bibliotecaria reproduce como valor agregado ligado a un modo de ser con base territorial; desmonta las máquinas axiomáticas de los manifiestos bibliotecarios que producen un valor agregado incluyendo forzadamente como deudores de conocimiento a los que no dominan el saber acumulado; y revela el valor agregado del capitalismo mundial integrado (CMI) que instaura procedimientos tácticos cada vez mas autoreferenciales (normas, pautas y directrices). En oposición a esos dispositivos de alineación, culpabilización, responsabilización y control, proponemos un proceso de singularización bibliotecaria en función de la producción de información ambiental en una Biblioteca Escolar Ecológica en conexión con redes sociales y bases de datos documentales.