977 resultados para Mine accidents.
Resumo:
Exposure to diesel particulate matter from diesel exhaust has been shown to have adverse health effects in humans. In 2012 The International Agency for Research on Cancer classified diesel exhaust as a group 1 know human carcinogen. Because of the associated health effects, there has been a strong push to reduce the amount of diesel exhaust present in the mining industry. Biodiesel is one to the more common and promising control options used to reduce the amount of diesel particulate matter that is generated during fuel combustion. The use of biodiesel over petroleum diesel has been shown to reduce not only particulate matter, but hydro carbon and carbon monoxide mass emissions as well. Personal and area samples were collected at an underground metal mine in the northwestern United States to evaluate the current blend of B70 biodiesel. The objective of this research was to evaluate the carbon levels associated with diesel particulate matter generated from the combustion of a B70 biodiesel. Data was also compared to past studies on which diesel particulate matter from petroleum diesel was evaluated. Samples were taken on four separate four day campaigns between March and October of 2014. Area samples were taken from 7 different areas in the mine and personal samples were taken from a 20 person cohort. The equipment used for sampling was compliant with the NIOSH 5040 method. Statistical analysis of the results was done using Minitab 17 software. The statistical analysis showed that the total carbon concentrations from biodiesel were well below the MSHA exposure limit. Results also showed that organic/elemental carbon ratios were consistent with past studies as the concentrations of organic carbon were significantly higher than those of elemental carbon.
Resumo:
The Cliff Mine, an archaeological site situated on the Keweenaw Peninsula of Michigan, is the location of the first successful attempt to mine native copper in North America. Under the management of the Pittsburgh & Boston Mining Company from 1845-1879, two-third of the Cliff’s mineral output was in the form of mass copper, some pieces of which weighed over 5 tons when removed from the ground. The unique nature of mass copper and the Cliff Mine’s handling of it make it one of the best examples of early mining processes in the Keweenaw District. Mass copper only constituted 2% of the entire product of the Lake Superior copper districts, and the story of early mining on the Peninsula is generally overshadowed by later, longer running mines such as the Calumet & Helca and Quincy Mining Companies. Operating into the mid-twentieth century, the size and duration of these later mines would come to define the region, though they would not have been possible without the Cliff’s early success. Research on the Cliff Mine has previously focused on social and popular history, neglecting the structural remains. However, these remains are physical clues to the technical processes that defined early mining on the Keweenaw. Through archaeological investigations, these processes and their associated networks were documented as part of the 2010 Michigan Technological Archaeology Field School’s curriculum. The project will create a visual representation of these processes utilizing Geographic Information Systems software. This map will be a useful aid in future research, community engagement and possible future interpretive planning.
Resumo:
Heat management in mines is a growing issue as mines expand physically in size and depth and as the infrastructure grows that is required to maintain them. Heat management is a concern as it relates to the health and safety of the workers as set by the regulations of governing bodies as well as the heat sensitive equipment that may be found throughout the mine workings. In order to reduce the exposure of working in hot environments there are engineering and management systems that can monitor and control the environmental conditions within the mine. The successful implementation of these methods can manage the downtime caused by heat stress environments, which can increase overall production. This thesis introduces an approach to monitoring and data based heat management. A case study is presented with an in depth approach to data collection. Data was collected for a period of up to and over one year. Continuous monitoring was conducted by equipment that was developed both commercially and within the mine site. The monitoring instrumentation was used to assess the environmental conditions found within the study area. Analysis of the data allowed for an engineering assessment of viable options in order to control and manage the environment heat stress. An option is developed and presented which allows for the greatest impact on the heat stress conditions within the case study area and is economically viable for the mine site.
Resumo:
The purpose of this paper is to investigate the potential for use of UAVs in underground mines and present a prototype design for a novel autorotating UAV platform for underground 3D data collection.
Resumo:
Apresenta-se uma metodologia para caracterizar a transmissividade dos Granitos Hercínicos e Metasedimentos do Complexo Xisto-Grauváquico do maciço envolvente e subjacente à antiga área mineira de urânio da Quinta do Bispo. Inicia-se com a modelação das litologias e grau de alteração a que se segue a simulação condicional da densidade de fracturação. No final, a densidade de fracturação é convertida num modelo 3D de transmissividade por relação com os resultados dos ensaios de bombagem. The purpose of this work is to present a methodology for characterizing the transmissivity of the Hercynian granites and complex schist–greywacke metasediment rocks surrounding and underlying the old Quinta do Bispo uranium mining site. The methodology encompasses modelling of lithologies and weathering levels, followed by a conditional simulation of fracture density. Fracture density is then converted into a 3D model of transmissivity via a relationship with pumping tests.
Resumo:
Research has demonstrated that mining activities can cause serious impacts on the environment, as well as the surrounding communities, mainly due to the unsafe storage of mine tailings. This research focuses on the sustainability assessment of new technologies for the recovery of metals from mine residues. The assessment consists in the evaluation of the environmental, economic, and social impacts through the Life Cycle based methods: Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (SLCA). The analyses are performed on the Mondo Minerals bioleaching project, which aim is to recover nickel and cobalt from the Sotkamo and Vuonos mine tailings. The LCA demonstrates that the project contributes to the avoided production of nickel and cobalt concentrates from new resources, hence reducing several environmental impacts. The LCC analysis shows that the company’s main costs are linked to the bioleaching process, caused by electricity consumption and the chemicals used. The SLCA analyses the impacts on three main stakeholder categories: workers, local community, and society. The results demonstrated that a fair salary (or the absence of it) impacts the workers the most, while the local community stakeholder category impacts are related to the access to material resources. The health and safety category is the most impacted category for the society stakeholder. The environmental and economic analyses demonstrate that the recovery of mine tailings may represents a good opportunity for mine companies both to reduce the environmental impacts linked to mine tailings and to increase the profitability. In particular, the project helps reduce the amounts of metals extracted from new resources and demonstrates that the use of the bioleaching technology for the extraction of metals can be economically profitable.
Resumo:
The severe accidents deriving from the impact of natural events on industrial installations have become a matter of growing concern in the last decades. In the literature, these events are typically referred to as Natech accidents. Several peculiarities distinguish them from conventional industrial accidents caused by internal factors, such as the possible occurrence of multiple simultaneous failures, and the enhanced probability of cascading events. The research project provides a comprehensive overview of Natech accidents that occurred in the Chemical and Process Industry, allowing for the identification of relevant aspects of Natech events. Quantified event trees and probability of ignition are derived from the collected dataset, providing a step forward in the quantitative risk assessment of Natech accidents. The investigation of past Natech accidents also demonstrated that wildfires may cause technological accidents. Climate change and global warming are promoting the conditions for wildfire development and rapid spread. Hence, ensuring the safety of industrial facilities exposed to wildfires is paramount. This was achieved defining safety distances between wildland vegetation and industrial equipment items. In addition, an innovative methodology for the vulnerability assessment of Natech and Domino scenarios triggered by wildfires was developed. The approach accounted for the dynamic behaviour of wildfire events and related technological scenarios. Besides, the performance of the emergency response and the related intervention time in the case of cascading events caused by natural events were evaluated. Overall, the tools presented in this thesis represent a step forward in the Quantitative Risk Assessment of Natech accidents. The methodologies developed also provide a solid basis for the definition of effective strategies for risk mitigation and reduction. These aspects are crucial to improve the resilience of industrial plants to natural hazards, especially considering the effects that climate change may have on the severity of such events.
Resumo:
Historical evidence shows that chemical, process, and Oil&Gas facilities where dangerous substances are stored or handled are target of deliberate malicious attacks (security attacks) aiming at interfering with normal operations. Physical attacks and cyber-attacks may generate events with consequences on people, property, and the surrounding environment that are comparable to those of major accidents caused by safety-related causes. The security aspects of these facilities are commonly addressed using Security Vulnerability/Risk Assessment (SVA/SRA) methodologies. Most of these methodologies are semi-quantitative and non-systematic approaches that strongly rely on expert judgment, leading to security assessments that are not reproducible. Moreover, they do not consider the synergies with the safety domain. The present 3-year research is aimed at filling the gap outlined by providing knowledge on security attacks, as well as rigorous and systematic methods supporting existing SVA/SRA studies suitable for the chemical, process, and Oil&Gas industry. The different nature of cyber and physical attacks resulted in the development of different methods for the two domains. The first part of the research was devoted to the development and statistical analysis of security databases that allowed to develop new knowledge and lessons learnt on security threats. Based on the obtained background, a Bow-Tie based procedure and two reverse-HazOp based methodologies were developed as hazard identification approaches for physical and cyber threats respectively. To support the quantitative estimation of the security risk, a quantitative procedure based on the Bayesian Network was developed allowing to calculate the probability of success of physical security attacks. All the developed methods have been applied to case studies addressing chemical, process and Oil&Gas facilities (offshore and onshore) proving the quality of the results that can be achieved in improving site security. Furthermore, the outcomes achieved allow to step forward in developing synergies and promoting integration among safety and security management.
Resumo:
Ho scelto di proporre una traduzione di una poesia scritta dalla cantautrice statunitense Halsey, “A Story Like Mine”, e da lei recitata in occasione della Women’s March di New York City tenutasi nel 2018; poi inserita all’interno di una raccolta di poesie della stessa Halsey pubblicata nel 2020 chiamata “I Would Leave Me If I Could”.
Resumo:
Seizures in some 30% to 40% of patients with epilepsy fail to respond to antiepileptic drugs or other treatments. While much has been made of the risks of new drug therapies, not enough attention has been given to the risks of uncontrolled and progressive epilepsy. This critical review summarizes known risks associated with refractory epilepsy, provides practical clinical recommendations, and indicates areas for future research. Eight international epilepsy experts from Europe, the United States, and South America met on May 4, 2013, to present, review, and discuss relevant concepts, data, and literature on the consequences of refractory epilepsy. While patients with refractory epilepsy represent the minority of the population with epilepsy, they require the overwhelming majority of time, effort, and focus from treating physicians. They also represent the greatest economic and psychosocial burdens. Diagnostic procedures and medical/surgical treatments are not without risks. Overlooked, however, is that these risks are usually smaller than the risks of long-term, uncontrolled seizures. Refractory epilepsy may be progressive, carrying risks of structural damage to the brain and nervous system, comorbidities (osteoporosis, fractures), and increased mortality (from suicide, accidents, sudden unexpected death in epilepsy, pneumonia, vascular disease), as well as psychological (depression, anxiety), educational, social (stigma, driving), and vocational consequences. Adding to this burden is neuropsychiatric impairment caused by underlying epileptogenic processes (essential comorbidities), which appears to be independent of the effects of ongoing seizures themselves. Tolerating persistent seizures or chronic medicinal adverse effects has risks and consequences that often outweigh risks of seemingly more aggressive treatments. Future research should focus not only on controlling seizures but also on preventing these consequences.
Resumo:
Severe accidents caused by the armed spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.
Resumo:
The first days of radioactivity, the discoveries of X-rays, radioactivity, of alpha- and beta- particles and gamma- radiation, of new radioactive elements, of artificial radioactivity, the neutron and positron and nuclear fission are reviewed as well as several adverse historical marks, such as the Manhattan project and some nuclear and radiological accidents. Nuclear energy generation in Brazil and the world, as an alternative to minimize environmental problems, is discussed, as are the medicinal, industrial and food applications of ionizing radiation. The text leads the reader to reflect on the subject and to consider its various aspects with scientific and technological maturity.
Resumo:
This aim of this work was to carry out an epidemiological study on acetabular fractures in the city of Campinas and surrounds, in view of the few published papers on this subject. Medical files with a diagnosis of acetabular fracture between the years 2004 and 2008 that were made available by the Medical Archiving Service of Hospital das Clínicas, State University of Campinas (UNICAMP) were analyzed by six observers. Data on patients' ages, sex, side affected by the fracture, mechanism of injury, material used for synthesis, complications of the operation, associated fractures, length of hospitalization before and after the surgery, time of total internment and number of physiotherapy sessions before and after the surgery were gathered. It was observed in this population that the left side was more affected; the mechanism of injury that most often caused this type of fracture was automobile accidents; injuries to the sciatic nerve were the commonest surgical complications; and the synthesis material most used was reconstruction plates.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física