938 resultados para Microscopia - Força atômica
Resumo:
Avaliou-se o efeito de enzimas fibrolíticas (celulase e xilanase) sobre a degradabilidade in situ da MS, PB, FDN, FDA e hemicelulose do feno de Tifton-85 (Cynodon spp.) cortado aos 30 e 90 dias e do bagaço de cana, utilizando-se seis bovinos com cânula no rúmen. As enzimas foram extraídas dos fungos Aspergillus niger e Trichoderma longibrachiatum e fornecidas, na quantidade de 0,75 g/kgMS.dia, por meio da cânula ruminal. Os tempos de incubação ruminal foram de 0, 3, 6, 12, 24, 48, 72 e 96 horas. Os resíduos de incubação foram avaliados por meio de microscopia eletrônica de varredura (MEV). O efeito da adição de enzimas sobre a degradação da MS e PB variou em função do volumoso estudado. A degradabilidade efetiva da MS do feno Tifton cortado aos 30 e 90 dias e do bagaço de cana sem a adição de enzimas foi de 61,85; 42,35 e 28,22%, respectivamente, e de 63,51; 40,64 e 31,43%, respectivamente, com a adição das enzimas. Não houve efeito das enzimas sobre a degradação da fibra. As observações ao MEV indicaram aumento da colonização bacteriana sobre a parede celular com a suplementação enzimática. A adição de enzimas fibrolíticas na dieta de ruminantes apresentou efeito pouco expressivo sobre os parâmetros de degradação ruminal dos volumosos estudados.
Resumo:
Ceramic substrates have been investigated by researchers around the world and has achieved a high interest in the scientific community, because they had high dielectric constants and excellent performance in the structures employed. Such ceramics result in miniaturized structures with dimensions well reduced and high radiation efficiency. In this work, we have used a new ceramic material called lead zinc titanate in the form of Zn0,8Pb0,2TiO3, capable of being used as a dielectric substrate in the construction of various structures of antennas. The method used in constructing the ceramic combustion synthesis was Self- Sustained High Temperature (SHS - "Self-Propagating High-Temperature Synthesis") which is defined as a process that uses highly exothermic reactions to produce various materials. Once initiated the reaction area in the reaction mixture, the heat generated is sufficient to become self-sustaining combustion in the form of a wave that propagates converting the reaction mixture into the product of interest. Were analyzed aspects of the formation of the composite Zn0,8Pb0,2TiO3 by SHS powders and characterized. The analysis consisted of determining the parameters of the reaction for the formation of the composite, as the ignition temperature and reaction mechanisms. The production of composite Zn0,8Pb0,2TiO3 by SHS performed in the laboratory, was the result of a total control of combustion temperature and after obtaining the powder began the development of ceramics. The product was obtained in the form of regular, alternating layers of porous ceramics and was obtained by uniaxial pressing. 10 The product was characterized by analysis of dilatometry, X-ray diffraction analysis and scanning electron microscopy. One of the contributions typically defined in this work is the development of a new dielectric material, nevertheless presented previously in the literature. Therefore, the structures of the antennas presented in this work consisted of new dielectric ceramics based Zn0,8Pb0,2TiO3 usually used as dielectric substrate. The materials produced were characterized in the microwave range. These are dielectrics with high relative permittivity and low loss tangent. The Ansoft HFSS, commercial program employee, using the finite element method, and was used for analysis of antennas studied in this work
Resumo:
Mangas 'Tommy Atkins' produzidas na região de Ibirá, São Paulo, foram pulverizadas na pré-colheita com cloreto de cálcio, nas concentrações de 0,0%, 2,5% e 5,0%, em três épocas de seu desenvolvimento (40; 60 e 90 dias após a floração) a fim de verificar a influência do cálcio na estrutura da parede celular destes frutos através de microscopia eletrônica de transmissão, imediatamente após a colheita e depois de 35 dias de armazenamento. Para fixar o material da polpa, utilizou-se metodologia descrita por Jacob e Gowanlock (1995). Nas condições experimentais, verificou-se que os frutos do tratamento-controle (sem cloreto de cálcio), no dia da colheita, já apresentavam desestruturação da parede celular e dissolução da lamela média (LM). A degradação da parede celular ocorre inicialmente na LM, levando à formação de espaços vazios bastante distintos, apresentando uma dissolução ainda maior, com o armazenamento prolongado (35 dias). Os frutos tratados com cloreto de cálcio a 5,0% apresentaram uma LM bem definida e ausência de espaços vazios, mesmo após o armazenamento, mostrando ser uma concentração efetiva na preservação da lamela média.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A possibilidade do desenvolvimento de técnicas de aplicação de produtos fitossanitários mais seguras, com menores volumes de calda, número de aplicações e deriva, aliados à necessidade de se obter melhores níveis de controle dos agentes nocivos às plantas cultivadas, justificam o uso da assistência de ar junto à barra de pulverização. Com o objetivo de avaliar a deposição da pulverização na cultura do feijoeiro (Phaseolus vulgaris), em presença e ausência da assistência de ar junto à barra de pulverização, com diferentes pontas de pulverização e volumes de calda, foi conduzido um experimento em delineamento inteiramente casualizado, utilizando-se como traçador o óxido cuproso. Alvos artificiais (papel filtro com 3 x 3 cm) foram afixados nas superfícies adaxial e abaxial de folíolos posicionados nos terços superior e inferior de plantas, selecionadas ao acaso, distribuídas perpendicularmente ao deslocamento do pulverizador. Após a aplicação do traçador os coletores foram lavados individualmente em solução extratora de ácido nítrico a 1,0 mol L-1. A determinação quantitativa dos depósitos foi realizada com o uso da espectrofotometria de absorção atômica. A assistência de ar junto à barra de pulverização não aumentou a deposição do traçador em folíolos de feijoeiro, aos 48 dias após a emergência da cultura.
Resumo:
O presente trabalho teve como objetivo investigar a possibilidade de se obter indicações sobre a qualidade fisiológica de sementes de amendoim através do teste de lixiviação de potássio, cuja eficiência foi avaliada comparativamente às informações fornecidas por outros testes de vigor e à emergência de plântulas em campo. Para tanto, utilizou-se dois lotes de sementes de amendoim da cultivar Tatu (peneira 20/64) que foram submetidos aos testes de germinação, primeira contagem de germinação, envelhecimento acelerado, condutividade elétrica (3 e 24 horas), emergência de plântulas em campo, índice de velocidade de emergência de plântulas, peso de matéria seca de plântulas e determinação do grau de umidade. Além destes, foram conduzidos estudos de lixiviação de potássio, cálcio e magnésio utilizando-se amostras de sementes fisicamente puras. A quantificação de potássio foi conduzida em fotômetro de chama e as de cálcio e magnésio em espectrofotometro de absorção atômica após 3, 6, 9, 12, 15, 18, 21, 24, 27 e 30 horas de embebição a 20ºC. As avaliações da lixiviação de potássio mostraram-se promissoras para a identificação de lotes com diferentes níveis de qualidade.
Resumo:
Hard metals are the composite developed in 1923 by Karl Schröter, with wide application because high hardness, wear resistance and toughness. It is compound by a brittle phase WC and a ductile phase Co. Mechanical properties of hardmetals are strongly dependent on the microstructure of the WC Co, and additionally affected by the microstructure of WC powders before sintering. An important feature is that the toughness and the hardness increase simultaneously with the refining of WC. Therefore, development of nanostructured WC Co hardmetal has been extensively studied. There are many methods to manufacture WC-Co hard metals, including spraying conversion process, co-precipitation, displacement reaction process, mechanochemical synthesis and high energy ball milling. High energy ball milling is a simple and efficient way of manufacturing the fine powder with nanostructure. In this process, the continuous impacts on the powders promote pronounced changes and the brittle phase is refined until nanometric scale, bring into ductile matrix, and this ductile phase is deformed, re-welded and hardened. The goal of this work was investigate the effects of highenergy milling time in the micro structural changes in the WC-Co particulate composite, particularly in the refinement of the crystallite size and lattice strain. The starting powders were WC (average particle size D50 0.87 μm) supplied by Wolfram, Berglau-u. Hutten - GMBH and Co (average particle size D50 0.93 μm) supplied by H.C.Starck. Mixing 90% WC and 10% Co in planetary ball milling at 2, 10, 20, 50, 70, 100 and 150 hours, BPR 15:1, 400 rpm. The starting powders and the milled particulate composite samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to identify phases and morphology. The crystallite size and lattice strain were measured by Rietveld s method. This procedure allowed obtaining more precise information about the influence of each one in the microstructure. The results show that high energy milling is efficient manufacturing process of WC-Co composite, and the milling time have great influence in the microstructure of the final particles, crushing and dispersing the finely WC nanometric order in the Co particles
Resumo:
The calcium phosphate ceramics have been very investigated as material for bone implants. The tricalcium phosphate (β-TCP) had a great potential for application in temporary implants like a resorbable bioceramic. This material presents a limitation in its sintering temperature due to occurrence of the allotropic transformation β → α at temperatures around 1200°C, not allowing the attainment of dense ceramic bodies. This transformation also causes cracks, what diminishes the mechanical strength, limiting its use to applications of low mechanical requests. This work studies the influence of the addition of manganese oxide in the sintering of β-TCP. Two processing routes were investigated. The first was the powder metallurgy conventional process. The test bodies (samples) were pressed and sintering at temperatures of 1200 and 1250°C. The second route was uniaxial hot pressing and its objective was to obtain samples with high relative density. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements. The microstructure was analyzed by scanning electron microscopy. The addition of manganese oxide caused an improvement of the mechanical strength in relation to the material without additive and promoting the stabilization of β-TCP to greater temperatures
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware
Resumo:
Metal ceramic restorations matches aesthetic and strength, and in your making occurs an interface oxide layer, wetting resulting and atomic and ionic interactions resulting between metal, oxide and porcelain. However, frequent clinical fails occurs in this restoration type, because lost homogeneous deposition oxide layer and lost interface bond. Thus, in this study, thought depositate homogeneous oxide films above Ni-Cr samples surfaces polite previously, at plasma oxide environment. Six samples was oxided at 300 and 400ºC at one hour, and two samples was oxided in a comum chamber at 900ºC, and then were characterized: optical microscopic, electronic microscopic, micro hardness, and X ray difratometry. Colors stripes were observed at six samples plasma oxided and a grey surface those comum oxided, thus like: hardness increase, and several oxides from basic metals (Ni-Cr)
Resumo:
Porous ceramics have many applications: thermal insulation, catalytic support, materials to fire protection, filters, and others. There are many techniques to production of ceramic filters. One technique to obtain ceramic filters is the replication method. This method consists in the impregnation of polymeric foam with ceramic slurry followed by a heating treatment that will burn out the organic elements and sintering of the material, resulting of a replication of the original foam. To perform their functions ceramic filters must satisfy mechanical requirements and permeability parameters (darcian k1 and no-darcian k2). The permeability and the strength of the ceramic material are dependent of the pore size and pore distribution. To the use at high temperatures the evaluation of mechanical properties in these temperatures is necessary. In this work the mechanical behavior of two commercial porous ceramics (10 and 40 poros per inch) was studied these materials were submitted to compression and four-point flexure test (room temperature, at 1000 °C, after thermal shock). Density and porosity measurements, permeability tests and microstructural analysis by scanning electronic microscopy (SEM) were realized. The Results showed that the decrease of mechanical strength of these materials, when submitted to thermal shock, occur for propagation of new cracks from cracks pre-existing and the permeability depends of the pore size
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
The use of polymer based coatings is a promising approach to reduce the corrosion problem in carbon steel pipes used for the transport of oil and gas in the oil industry. However, conventional polymer coatings offer limited properties, which often cannot meet design requirements for this type of application, particularly in regard to use temperature and wear resistance. Polymer nanocomposites are known to exhibit superior properties and, therefore, offer great potential for this type of application. Nevertheless, the degree of enhancement of a particular property is greatly dependent upon the matrix/nanoparticle material system used, the matrix/nanoparticle interfacial bonding and also the state of dispersion of the nanoparticle in the polymer matrix. The objective of the present research is to develop and characterize polymer based nanocomposites to be used as coatings in metallic pipelines for the transportation of oil and natural gas. Epoxy/SiO2 nanocomposites with nanoparticle contents of 2, 4, and 8 wt % were processed using a high-energy mill. Modifications of the SiO2 nanoparticles‟ surfaces with two different silane agents were carried out and their effect on the material properties were investigated. The state of dispersion of the materials processed was studied using Scanning and Transmission Electron Microscopy (SEM and TEM) micrographs. Thermogravimetric analysis (TG) were also conducted to determine the thermal stability of the nanocomposites. In addition, the processed nanocomposites were characterized by dynamic mechanical analysis (DMA) to investigate the effect of nanoparticles content and silane treatment on the viscoelastic properties and on the glass transition temperature. Finally, wear tests of the pin-on-disc type were carried out to determine the effects of the nanoparticles and the silane treatments studied. According to the results, the addition of SiO2 nanoparticles treated with silane increased the thermal stability, the storage modulus and Tg of the epoxy resin and decreased wear rate. This confirms that the interaction between the nanoparticles and the polymer chains plays a critical role on the properties of the nanocomposites