939 resultados para Microarray electrodes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how uric acid crystals provoke inflammation is crucial to improving our management of acute gout. It is well known that urate crystals stimulate monocytes and macrophages to elaborate inflammatory cytokines, but the tissue response of the synovium is less well understood. Microarray analysis of mRNA expression by these lining cells may help to delineate the genes that are modulated. Employing a murine air-pouch model, a number of genes expressed by innate immune cells were found to be rapidly upregulated by monosodium urate crystals. These findings provide new research avenues to investigate the physiopathology of gouty inflammation, and may eventually lead to new therapeutic targets in acute gout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensory information is an important factor in shaping neuronal circuits during development and adulthood. In the barrel cortex of adult rodents, cells from layer IV are able to adapt their functional state to an increased flow of sensory information from the mystacial whisker follicles. Previous studies in our group have shown that whisker stimulation induces the formation of inhibitory synapses in the corresponding barrel (Knott et al., 2002) and decreases neuronal responses toward the deflection of the stimulated whisker (Quairiaux et al., 2007). Together these observations have turned the barrel cortex into a model to study homeostatic plasticity. At the cellular level, neuronal activity triggers intracellular signaling cascades leading to a transcriptional response. To further characterize the molecular pathways involved in the synaptic changes after whisker stimulation in the adult mouse, a previous doctoral student in our group performed a microarray analysis on laser-dissected barrels in sections through layer IV. This study identified the regulation (up and down) of a series of genes in the stimulated barrels (thesis of Johnston-Wenger, 2010). We here focused on ten genes that presented the highest fold change according to the microarray analysis. Out of these genes, 7 are known as neuronal activity-dependent genes (Tnncl, Nptx2, Sorcs3, Ptgs2, Nr4a2, Npas4 and Adcyapl) whereas three have so far not been related to neuronal plasticity (Scn7a, Pcdhl5 and Cede3). The study aimed at confirming the results of the microarray analysis and localizing molecular modifications in the stimulated barrel column at the cellular level. In situ hybridization for Pcdhl5 after different periods of whisker stimulation (3, 6, 9, 15, 24 hrs) allowed us to confirm that the 1.25 fold change used for the microarray analysis is an appropriate threshold for considering a regulation significant after sensory-stimulation. Moreover, we confirmed with in situ hybridization a significant upregulation of the genes of interest in the stimulated barrels. In situ hybridization and immunohistochemistry allowed us to observe the distribution of the genes of interest and the corresponding protein products at the cellular level. Three observations were made: 1) alterations of the expression was restricted to the stimulated barrels for all genes tested; 2) within a barrel column not all cells responded to whisker stimulation with an altered gene expression; 3) in the stimulated barrels, two different patterns of mRNA and protein expression can be distinguished. We hypothesize that this segregation of the activity-induced gene expression reflects the segregation of the two principal thalamocortical pathways conveying the sensory information to the barrel cortex. Moreover, only neurons reaching the critical threshold will modify their gene expression program resulting in structural as well as physiological modifications that prevent the subsequent propagation of the excess of excitation to the postsynaptic targets. The activity-induced gene expression is therefore adapted in a cell-type-specific manner to induce a homeostatic response to the entire neuronal network involved in the integration of the sensory information. This to our knowledge the first study showing the distinct, but complementary contribution of the two thalamocortical pathways in experience-dependent plasticity in the adult mouse barrel cortex. -- L'information sensorielle nous permet de continuellement façonner nos circuits neuronaux autant durant le développement qu'à l'âge adulte. Chez le rongeur l'information sensorielle perçue par les vibrisses est intégrée au niveau du cortex somatosensoriel primaire (appelé en anglais « barrel cortex ») dont les cellules de la couche IV sont capables d'adapter leur état fonctionnel en réponse à une augmentation d'activité neuronale. Ce modèle expérimental a permis à notre groupe de recherche d'observer des changements rapides du circuit neuronal en fonction de l'activité sensorielle. En effet, la stimulation continue d'une vibrisse d'une souris adulte pendant 24 heures induit non seulement un remaniement synaptique (Knott et al., 2002), mais également des changements physiologiques au niveau des neurones du tonneau correspondant (Quairiaux et al., 2007). Ces observations nous permettent d'affirmer que le « barrel cortex » est un modèle approprié pour y étudier la plasticité synaptique. Au niveau cellulaire, l'activité neuronale déclenche des cascades de signalisation intracellulaire résultant en une réponse transcriptionnelle. Afin de caractériser les voies moléculaires impliquées dans la plasticité synaptique, une puce à ARN nous a permis de comparer l'expression de gènes entre un tonneau correspondant à une vibrisse stimulée et un tonneau d'une vibrisse non-stimulée (Nathalie). Cette analyse a révélé un certain nombre de gènes régulés de manière positive ou négative par l'augmentation de l'activité neuronale. Nous nous sommes concentrés sur 10 gènes dont l'expression est fortement régulée. L'expression de sept d'entre eux a déjà été démontrée comme dépendante de l'activité neuronale (Tnncl, Nptx2, Sorcs3, Ptgs2, Nr4a2, Npas4 otAdcyapl) alors que l'expression des trois autres (Scn7a, Pcdhl5 et Cedei) n'a pour le moment pas encore été liée à la plasticité neuronale. Le but de cette thèse est de confirmer les résultats de la puce à ARN et de déterminer dans quel type cellulaire ces gènes sont exprimés. L'hybridation in situ pour le gène Pcdhl5, après différentes périodes de stimulation des vibrisses (3, 6, 9, 15 et 24 heures), nous a permis de confirmer que le seuil de 1.25x utilisé dans l'analyse de la puce à ARN est approprié pour considérer qu'un gène est régulé de manière significative par la stimulation sensorielle. Nous avons également pu confirmer à l'aide de cette technique que la stimulation sensorielle augmente significativement l'expression de ces dix gènes. L'expression de ces gènes au niveau cellulaire a été observée à l'aide des techniques d'hybridation in situ et d'immunohistochimie. Trois observations ont été faites : 1) la régulation de ces gènes est restreinte aux tonneaux correspondants aux vibrisses stimulées ; 2) au niveau d'une colonne corticale correspondant aux vibrisses stimulées, seules certaines cellules présentent une altération de leur expression génique ; 3) au niveau des tonneaux stimulés, deux profils d'expression d'ARNm et de protéines sont observés. Notre hypothèse est que cette distribution pourrait correspondre à la terminaison ségrégée des deux voies thalamocortical qui amènent l'information sensorielle dans le cortex cérébral. De plus, seul les neurones atteignant le seuil critique d'activation modifient leur expression génique en réponse à la stimulation sensorielle. Ces changements d'expression géniques vont permettre à la cellule de modifier ses propriétés structurales et physiologiques de manière a prevenir la propagation d'un excès d'activité neuronale au niveau de ses cibles postsynaptics. L'activité neuronale agit donc spécifiquement sur certains types cellulaires de maniere a induire une réponse homéostatique au niveau du réseau neuronal impliqué dans l'integration de l'information sensorielle. Nos travaux démontrent pour une première fois que les deux voies sensorielles contribuent d'une manière distincte et complémentaire à la plasticité corticale induite par un changement de l'activité sensorielle chez la souris adulte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dysregulation of intestinal epithelial cell performance is associated with an array of pathologies whose onset mechanisms are incompletely understood. While whole-genomics approaches have been valuable for studying the molecular basis of several intestinal diseases, a thorough analysis of gene expression along the healthy gastrointestinal tract is still lacking. The aim of this study was to map gene expression in gastrointestinal regions of healthy human adults and to implement a procedure for microarray data analysis that would allow its use as a reference when screening for pathological deviations. We analyzed the gene expression signature of antrum, duodenum, jejunum, ileum, and transverse colon biopsies using a biostatistical method based on a multivariate and univariate approach to identify region-selective genes. One hundred sixty-six genes were found responsible for distinguishing the five regions considered. Nineteen had never been described in the GI tract, including a semaphorin probably implicated in pathogen invasion and six novel genes. Moreover, by crossing these genes with those retrieved from an existing data set of gene expression in the intestine of ulcerative colitis and Crohn's disease patients, we identified genes that might be biomarkers of Crohn's and/or ulcerative colitis in ileum and/or colon. These include CLCA4 and SLC26A2, both implicated in ion transport. This study furnishes the first map of gene expression along the healthy human gastrointestinal tract. Furthermore, the approach implemented here, and validated by retrieving known gene profiles, allowed the identification of promising new leads in both healthy and disease states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective schistosome vaccine is a desirable control tool but progress towards that goal has been slow. Protective immunity has been difficult to demonstrate in humans, particularly children, so no routes to a vaccine have emerged from that source. The concept of concomitant immunity appeared to offer a paradigm for a vaccine operating against incoming larvae in the skin but did not yield the expected dividends. The mining of crude parasite extracts, the use of monoclonal antibodies and protein selection based on immunogenicity produced a panel of vaccine candidates, mostly of cytoplasmic origin. However, none of these performed well in independent rodent trials, but glutathione-S-transferease from Schistosoma haematobium is currently undergoing clinical trials as an anti-fecundity vaccine. The sequencing of the S. mansoni transcriptome and genome and the development of proteomic and microarray technologies has dramatically improved the possibilities for identifying novel vaccine candidates, particularly proteins secreted from or exposed at the surface of schistosomula and adult worms. These discoveries are leading to a new round of protein expression and protection experiments that will enable us to evaluate systematically all the major targets available for immune intervention. Only then will we know if schistosomes have an Achilles' heel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: EEG is mandatory in the diagnosis of the epilepsy syndrome. However, its potential as imaging tool is still under estimated. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: One hundred fifty patients suffering from focal epilepsy and with minimum 1 year postoperative follow-up were studied prospectively and blinded to the underlying diagnosis. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: <30 versus high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) versus template MRI (t-MRI) as the head model. Findings: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%). Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are coregistered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imagery techniques. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Giant congenital naevi are pigmented childhood lesions that frequently lead to melanoma, the most aggressive skin cancer. The mechanisms underlying this malignancy are largely unknown, and there are no effective therapies. Here we describe a mouse model for giant congenital naevi and show that naevi and melanoma prominently express Sox10, a transcription factor crucial for the formation of melanocytes from the neural crest. Strikingly, Sox10 haploinsufficiency counteracts Nras(Q61K)-driven congenital naevus and melanoma formation without affecting the physiological functions of neural crest derivatives in the skin. Moreover, Sox10 is also crucial for the maintenance of neoplastic cells in vivo. In human patients, virtually all congenital naevi and melanomas are SOX10 positive. Furthermore, SOX10 silencing in human melanoma cells suppresses neural crest stem cell properties, counteracts proliferation and cell survival, and completely abolishes in vivo tumour formation. Thus, SOX10 represents a promising target for the treatment of congenital naevi and melanoma in human patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The purpose of this work was to characterize the expression of drug and nutrient carriers along the anterior-posterior and crypt-villus axes of the intestinal epithelium and to study the validity of utilizing whole gut tissue rather than purified epithelial cells to examine regional variations in gene expression. RESULTS: We have characterized the mRNA expression profiles of 76 % of all currently known transporters along the anterior-posterior axis of the gut. This is the first study to describe the expression profiles of the majority of all known transporters in the intestine. The expression profiles of transporters, as defined according to the Gene Ontology consortium, were measured in whole tissue of the murine duodenum, jejunum, ileum and colon using high-density microarrays. For nine transporters (Abca1, Abcc1, Abcc3, Abcg8, Slc10a2, Slc28a2, Slc2a1, Slc34a2 and Slc5a8), the mRNA profiles were further measured by RT-PCR in laser micro-dissected crypt and villus epithelial cells corresponding to the aforementioned intestinal regions. With respect to differentially regulated transporters, the colon had a distinct expression profile from small intestinal segments. The majority (59 % for p cutoff < or = 0.05) of transporter mRNA levels were constant across the intestinal sections studied. For the transporter subclass "carrier activity", which contains the majority of known carriers for biologically active compounds, a significant change (p < or = 0.05) along the anterior-posterior axis was observed. CONCLUSION: All nine transporters examined in laser-dissected material demonstrated good replication of the region-specific profiles revealed by microarray. Furthermore, we suggest that the distribution characteristics of Slc5a8 along the intestinal tract render it a suitable candidate carrier for monocarboxylate drugs in the posterior portion of the intestine. Our findings also predict that there is a significant difference in the absorption of carrier-mediated compounds in the different intestinal segments. The most pronounced differences can be expected between the adjoining segments ileum and colon, but the differences between the other adjoining segments are not negligible. Finally, for the examined genes, profiles measured in whole intestinal tissue extracts are representative of epithelial cell-only gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emergent molecular measurement methods, such as DNA microarray, qRTPCR, andmany others, offer tremendous promise for the personalized treatment of cancer. Thesetechnologies measure the amount of specific proteins, RNA, DNA or other moleculartargets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumorspecimens are heterogeneous; an individual specimen typically contains unknownamounts of multiple tissues types. Thus, the measured molecular concentrations resultfrom an unknown mixture of tissue types, and must be normalized to account for thecomposition of the mixture.For example, a breast tumor biopsy may contain normal, dysplastic and cancerousepithelial cells, as well as stromal components (fatty and connective tissue) and bloodand lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic andcancerous epithelial cells. The remaining tissue components serve to “contaminate”the signal of interest. The proportion of each of the tissue components changes asa function of patient characteristics (e.g., age), and varies spatially across the tumorregion. Because each of the tissue components produces a different molecular signature,and the amount of each tissue type is specimen dependent, we must estimate the tissuecomposition of the specimen, and adjust the molecular signal for this composition.Using the idea of a chemical mass balance, we consider the total measured concentrationsto be a weighted sum of the individual tissue signatures, where weightsare determined by the relative amounts of the different tissue types. We develop acompositional source apportionment model to estimate the relative amounts of tissuecomponents in a tumor specimen. We then use these estimates to infer the tissuespecificconcentrations of key molecular targets for sub-typing individual tumors. Weanticipate these specific measurements will greatly improve our ability to discriminatebetween different classes of tumors, and allow more precise matching of each patient tothe appropriate treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconstruction of large oral mucosa defects is often challenging, since the shortage of healthy oral mucosa to replace the excised tissues is very common. In this context, tissue engineering techniques may provide a source of autologous tissues available for transplant in these patients. In this work, we developed a new model of artificial oral mucosa generated by tissue engineering using a fibrin-agarose scaffold. For that purpose, we generated primary cultures of human oral mucosa fibroblasts and keratinocytes from small biopsies of normal oral mucosa using enzymatic treatments. Then we determined the viability of the cultured cells by electron probe quantitative X-ray microanalysis, and we demonstrated that most of the cells in the primary cultures were alive and had high K/Na ratios. Once cell viability was determined, we used the cultured fibroblasts and keratinocytes to develop an artificial oral mucosa construct by using a fibrin-agarose extracellular matrix and a sequential culture technique using porous culture inserts. Histological analysis of the artificial tissues showed high similarities with normal oral mucosa controls. The epithelium of the oral substitutes had several layers, with desmosomes and apical microvilli and microplicae. Both the controls and the oral mucosa substitutes showed high suprabasal expression of cytokeratin 13 and low expression of cytokeratin 10. All these results suggest that our model of oral mucosa using fibrin-agarose scaffolds show several similarities with native human oral mucosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we review the impact that the availability of the Schistosoma mansoni genome sequence and annotation has had on schistosomiasis research. Easy access to the genomic information is important and several types of data are currently being integrated, such as proteomics, microarray and polymorphic loci. Access to the genome annotation and powerful means of extracting information are major resources to the research community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate and validate mRNA expression markers capable of identifying patients with ErbB2-positive breast cancer associated with distant metastasis and reduced survival. PATIENTS AND METHODS: Expression of 60 genes involved in breast cancer biology was assessed by quantitative real-time PCR (qrt-PCR) in 317 primary breast cancer patients and correlated with clinical outcome data. Results were validated subsequently using two previously published and publicly available microarray data sets with different patient populations comprising 295 and 286 breast cancer samples, respectively. RESULTS: Of the 60 genes measured by qrt-PCR, urokinase-type plasminogen activator (uPA or PLAU) mRNA expression was the most significant marker associated with distant metastasis-free survival (MFS) by univariate Cox analysis in patients with ErbB2-positive tumors and an independent factor in multivariate analysis. Subsequent validation in two microarray data sets confirmed the prognostic value of uPA in ErbB2-positive tumors by both univariate and multivariate analysis. uPA mRNA expression was not significantly associated with MFS in ErbB2-negative tumors. Kaplan-Meier analysis showed in all three study populations that patients with ErbB2-positive/uPA-positive tumors exhibited significantly reduced MFS (hazard ratios [HR], 4.3; 95% CI, 1.6 to 11.8; HR, 2.7; 95% CI, 1.2 to 6.2; and, HR, 2.8; 95% CI, 1.1 to 7.1; all P < .02) as compared with the group with ErbB2-positive/uPA-negative tumors who exhibited similar outcome to those with ErbB2-negative tumors, irrespective of uPA status. CONCLUSION: After evaluation of 898 breast cancer patients, uPA mRNA expression emerged as a powerful prognostic indicator in ErbB2-positive tumors. These results were consistent among three independent study populations assayed by different techniques, including qrt-PCR and two microarray platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Alterations in glucose metabolism and epithelial-mesenchymal transition (EMT) constitute two important characteristics of carcinoma progression toward invasive cancer. Despite an extensive characterization of each of them separately, the links between EMT and glucose metabolism of tumor cells remain elusive. Here we show that the neuronal glucose transporter GLUT3 contributes to glucose uptake and proliferation of lung tumor cells that have undergone an EMT. RESULTS: Using a panel of human non-small cell lung cancer (NSCLC) cell lines, we demonstrate that GLUT3 is strongly expressed in mesenchymal, but not epithelial cells, a finding corroborated in hepatoma cells. Furthermore, we identify that ZEB1 binds to the GLUT3 gene to activate transcription. Importantly, inhibiting GLUT3 expression reduces glucose import and the proliferation of mesenchymal lung tumor cells, whereas ectopic expression in epithelial cells sustains proliferation in low glucose. Using a large microarray data collection of human NSCLCs, we determine that GLUT3 expression correlates with EMT markers and is prognostic of poor overall survival. CONCLUSIONS: Altogether, our results reveal that GLUT3 is a transcriptional target of ZEB1 and that this glucose transporter plays an important role in lung cancer, when tumor cells loose their epithelial characteristics to become more invasive. Moreover, these findings emphasize the development of GLUT3 inhibitory drugs as a targeted therapy for the treatment of patients with poorly differentiated tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. METHODS To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. RESULTS Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. CONCLUSION E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.