902 resultados para Micro Computed Tomograpphy, Scaffold, Tissue Engineering, Morphometry, Porosity, Rigid Registration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impairment of postural control is a common consequence of Parkinson's disease (PD) that becomes more and more critical with the progression of the disease, in spite of the available medications. Postural instability is one of the most disabling features of PD and induces difficulties with postural transitions, initiation of movements, gait disorders, inability to live independently at home, and is the major cause of falls. Falls are frequent (with over 38% falling each year) and may induce adverse consequences like soft tissue injuries, hip fractures, and immobility due to fear of falling. As the disease progresses, both postural instability and fear of falling worsen, which leads patients with PD to become increasingly immobilized. The main aims of this dissertation are to: 1) detect and assess, in a quantitative way, impairments of postural control in PD subjects, investigate the central mechanisms that control such motor performance, and how these mechanism are affected by levodopa; 2) develop and validate a protocol, using wearable inertial sensors, to measure postural sway and postural transitions prior to step initiation; 3) find quantitative measures sensitive to impairments of postural control in early stages of PD and quantitative biomarkers of disease progression; and 4) test the feasibility and effects of a recently-developed audio-biofeedback system in maintaining balance in subjects with PD. In the first set of studies, we showed how PD reduces functional limits of stability as well as the magnitude and velocity of postural preparation during voluntary, forward and backward leaning while standing. Levodopa improves the limits of stability but not the postural strategies used to achieve the leaning. Further, we found a strong relationship between backward voluntary limits of stability and size of automatic postural response to backward perturbations in control subjects and in PD subjects ON medication. Such relation might suggest that the central nervous system presets postural response parameters based on perceived maximum limits and this presetting is absent in PD patients OFF medication but restored with levodopa replacement. Furthermore, we investigated how the size of preparatory postural adjustments (APAs) prior to step initiation depend on initial stance width. We found that patients with PD did not scale up the size of their APA with stance width as much as control subjects so they had much more difficulty initiating a step from a wide stance than from a narrow stance. This results supports the hypothesis that subjects with PD maintain a narrow stance as a compensation for their inability to sufficiently increase the size of their lateral APA to allow speedy step initiation in wide stance. In the second set of studies, we demonstrated that it is possible to use wearable accelerometers to quantify postural performance during quiet stance and step initiation balance tasks in healthy subjects. We used a model to predict center of pressure displacements associated with accelerations at the upper and lower back and thigh. This approach allows the measurement of balance control without the use of a force platform outside the laboratory environment. We used wearable accelerometers on a population of early, untreated PD patients, and found that postural control in stance and postural preparation prior to a step are impaired early in the disease when the typical balance and gait intiation symptoms are not yet clearly manifested. These novel results suggest that technological measures of postural control can be more sensitive than clinical measures. Furthermore, we assessed spontaneous sway and step initiation longitudinally across 1 year in patients with early, untreated PD. We found that changes in trunk sway, and especially movement smoothness, measured as Jerk, could be used as an objective measure of PD and its progression. In the third set of studies, we studied the feasibility of adapting an existing audio-biofeedback device to improve balance control in patients with PD. Preliminary results showed that PD subjects found the system easy-to-use and helpful, and they were able to correctly follow the audio information when available. Audiobiofeedback improved the properties of trunk sway during quiet stance. Our results have many implications for i) the understanding the central mechanisms that control postural motor performance, and how these mechanisms are affected by levodopa; ii) the design of innovative protocols for measuring and remote monitoring of motor performance in the elderly or subjects with PD; and iii) the development of technologies for improving balance, mobility, and consequently quality of life in patients with balance disorders, such as PD patients with augmented biofeedback paradigms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nel corso degli anni diverse sono le tecniche proposte per il trattamento delle lesioni osteocondrali, da quelle mini-invasive con stimolazione midollare fino a quelle più aggressive basate sul trapianto di tessuti autologhi o eterologhi. Tutti questi metodi hanno comunque dei difetti ed è questo il motivo per cui il trattamento delle lesioni osteocondrali rappresenta tuttora una sfida per il chirurgo ortopedico, in considerazione dell’alta specializzazione e del basso potere di guarigione del tessuto cartilagineo. Buoni risultati sono stati ottenuti con innesti bioingegnerizzati o matrici polimeriche impiantati nei siti danneggiati. La quantità di scaffolds in uso per la riparazione condrale ed osteocondrale è molto ampia; essi differiscono non solo per il tipo di materiali usati per la loro realizzazione, ma anche per la presenza di promotori di una o più linee cellulari , su base condrogenica o osteogenica. Quando ci si approccia ad una lesione condrale di grandi dimensioni, l’osso sub-condrale è anch’esso coinvolto e necessita di trattamento per ottenere il corretto ripristino degli strati articolari più superficiali. La scelta più giusta sembra essere un innesto osteocondrale bioingegnerizzato, pronto per l’uso ed immediatamente disponibile, che consenta di effettuare il trattamento in un unico tempo chirurgico. Sulla base di questo razionale, dopo uno studio preclinico animale e previa autorizzazione del comitato etico locale, abbiamo condotto uno studio clinico clinico pilota utilizzando un nuovo innesto biomimetico nanostrutturato per il trattamento di lesioni condrali ed osteocondrali del ginocchio; la sua sicurezza e maneggevolezza, così come la facile riproducibilità della tecnica chirurgica ed i risultati clinici ottenuti sono stati valutati nel tempo a 6, 12, 24, 36 e 48 mesi dall’impianto in modo da testare il suo potenziale intrinseco senza l’aggiunta di alcuna linea cellulare.