979 resultados para Mice, Knockout


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been shown to down-regulate experimental allergic asthma, a finding that reinforced the hygiene hypothesis. We have previously found that recombinant BCG (rBCG) strain that express the genetically detoxified Si subunit of pertussis toxin (rBCG-S1PT) exerts an adjuvant effect that enhances Th1 responses against BCG proteins. Here we investigated the effect of this rBCG-S1PT on the classical ovalbumin-induced mouse model of allergic lung disease. We found that rBCG-S1PT was more effective than wild-type BCG in preventing Th2-mediated allergic immune responses. The inhibition of allergic lung disease was not associated with increased concentration of suppressive cytokines or with an increased number of pulmonary regulatory T cells but was positively correlated with the increase in IFN-gamma-producing T cells and T-bet expression in the lung. In addition, an IL-12-dependent mechanism appeared to be important to the inhibition of lung allergic disease. The inhibition of allergic inflammation was found to be restricted to the lung because when allergen challenge was given by the intraperitoneal route, rBCG-S1PT administration failed to inhibit peritoneal allergic inflammation and type 2 cytokine production. Our work offers a nonclassical interpretation for the hygiene hypothesis indicating that attenuation of lung allergy by rBCG could be due to the enhancement of local lung Th1 immunity induced by rBCG-S1PT. Moreover, it highlights the possible use of rBCG strains as multipurpose immunomodulators by inducing specific immunity against microbial products while protecting against allergic asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to it whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; INF-alpha; IL-1 beta; and IL-6 gene expression; and I kappa B kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and INF-alpha and IL-6 messenger RNA (mRNA) (similar to 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, INF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage in and normalized IKK-alpha/beta phosphorylation; INF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects. (C) 2010 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The midbrain periaqueductal gray (PAG) is part of the brain system involved in active defense reactions to threatening stimuli. Glutamate N-methyl-d-aspartate (NMDA) receptor activation within the dorsal column of the PAG (dPAG) leads to autonomic and behavioral responses characterized as the fear reaction. Nitric oxide (NO) has been proposed to be a mediator of the aversive action of glutamate, since the activation of NMDA receptors in the brain increases NO synthesis. We investigated the effects of intra-dPAG infusions of NMDA on defensive behaviors in mice pretreated with a neuronal nitric oxide synthase (nNOS) inhibitor [N omega-propyl-l-arginine (NPLA)], in the same midbrain site, during a confrontation with a predator in the rat exposure test (RET). Male Swiss mice received intra-dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 mu l), and 10 min later, they were infused with NMDA (0.04 nmol/0.1 mu l) into the dPAG. After 10 min, each mouse was placed in the RET. NMDA treatment enhanced avoidance behavior from the predator and markedly increased freezing behavior. These proaversive effects of NMDA were prevented by prior injection of NPLA. Furthermore, defensive behaviors (e.g., avoidance, risk assessment, freezing) were consistently reduced by the highest dose of NPLA alone, suggesting an intrinsic effect of nitric oxide on defensive behavior in mice exposed to the RET. These findings suggest a potential role of glutamate NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice during a confrontation with a predator in the RET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the major pathogen leading to respiratory disease in infants and neonates worldwide. An effective vaccine has not yet been developed against this virus, despite considerable efforts in basic and clinical research. HRSV replication is independent of the nuclear RNA processing constraints, since the virus genes are adapted to the cytoplasmic transcription, a process performed by the viral RNA-dependent RNA polymerase. This study shows that meaningful nuclear RNA polymerase II dependent expression of the HRSV nucleoprotein (N) and phosphoprotein (F) proteins can only be achieved with the optimization of their genes, and that the intracellular localization of N and P proteins changes when they are expressed out of the virus replication context. Immunization tests performed in mice resulted in the induction of humoral immunity using the optimized genes. This result was not observed for the non-optimized genes. In conclusion, optimization is a valuable tool for improving expression of HRSV genes in DNA vaccines. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel way to combine different observation models in a particle filter framework. This, so called, auto-adjustable observation model, enhance the particle filter accuracy when the tracked objects overlap without infringing a great runtime penalty to the whole tracking system. The approach has been tested under two important real world situations related to animal behavior: mice and larvae tracking. The proposal was compared to some state-of-art approaches and the results show, under the datasets tested, that a good trade-off between accuracy and runtime can be achieved using an auto-adjustable observation model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of similar to 26 months and a nearly identical maximal life expectancy of similar to 37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction - A large number of natural and synthetic compounds having butenolides as a core unit have been described and many of them display a wide range of biological activities. Butenolides from P. malacophyllum have presented potential antifungal activities but no specific, fast, and precise method has been developed for their determination. Objective - To develop a methodology based on micellar electrokinetic chromatography to determine butenolides in Piper species. Methodology - The extracts were analysed in an uncoated fused-silica capillaries and for the micellar system 20 mmol/L SDS, 20% (v/v) acetonitrile (ACN) and 10 mmol/L STB aqueous buffer at pH 9.2 were used. The method was validated for precision, linearity, limit of detection (LOD) and limit of quantitation (LOQ) and the standard deviations were determined from the standard errors estimated by the regression line. Results - A micellar electrokinetic chromatography (MEKC) method for determination of butenolides in extracts gave full resolution for 1 and 2. The analytical curve in the range 10.0-50.0 mu g/mL (r(2) = 0.999) provided LOD and LOQ for 1 and 2 of 2.1/6.3 and 1.1/3.5 mu g/mL, respectively. The RSD for migration times were 0.12 and 1.0% for peak area ratios with 100.0 +/- 1.4% of recovery. Conclusions - A novel high-performance MEKC method developed for the analysis of butenolides 1 and 2 in leaf extracts of P. malacophyllum allowed their quantitative determined within an analysis time shorter than 5 min and the results indicated CE to be a feasible analytical technique for the quantitative determination of butenolides in Piper extracts. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatherapy uses essential oils (EOs) for several medical purposes, including relaxation. The association between the use of aromas and a decrease in anxiety could be a valuable instrument in managing anxiety in an ever increasing anxiogenic daily life style. Linalool is a monoterpene commonly found as the major volatile component of EOs in several aromatic plant species. Adding to previously reported sedative effects of inhaled linalool, the aim of this study was to investigate the effects of inhaled linalool on anxiety, aggressiveness and social interaction in mice. Additionally, we investigated the effects of inhaled linalool on the acquisition phase of a step-down memory task in mice. Inhaled linalool showed anxiolytic properties in the light/dark test, increased social interaction and decreased aggressive behavior; impaired memory was only seen the higher dose of linalool. These results strengthen the suggestion that inhaling linalool rich essential oils can be useful as a mean to attain relaxation and counteract anxiety. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linalool is a monoterpene often found as a major component of essential oils obtained from aromatic plant species., many of which are used in traditional medical systems as hypno-sedatives. Psychopharmacological evaluations of linalool (i.p. and i.c.v.) revealed marked sedative and anticonvulsant central effects in various mouse models. Considering this profile and alleged effects of inhaled lavender essential oil, the purpose of this study was to examine the sedative effects of inhaled linalool in mice. Mice were placed in an inhalation chamber during 60 min, in an atmosphere saturated with 1% or 3% linalool. Immediately after inhalation, animals were evaluated regarding locomotion, barbiturate-induced sleeping time, body temperature: and motor coordination (rota-rod test). The 1% and 3% linalool increased (p < 0.01) pentobarbital sleeping time and reduced (p<0.01) body temperature. The 3% linalool decreased (p<0.01) locomotion. Motor coordination was not affected. Hence, linalool inhaled for I h seems to induce sedation without significant impairment in motor abilities, a side effect shared by most psycholeptic drugs. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade I PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caloric restriction is the most effective non-genetic intervention to enhance lifespan known to date. A major research interest has been the development of therapeutic strategies capable of promoting the beneficial results of this dietary regimen. In this sense, we propose that compounds that decrease the efficiency of energy conversion, such as mitochondrial uncouplers, can be caloric restriction mimetics. Treatment of mice with low doses of the protonophore 2,4-dinitrophenol promotes enhanced tissue respiratory rates, improved serological glucose, triglyceride and insulin levels, decrease of reactive oxygen species levels and tissue DNA and protein oxidation, as well as reduced body weight. Importantly, 2,4-dinitrophenol-treated animals also presented enhanced longevity. Our results demonstrate that mild mitochondrial uncoupling is a highly effective in vivo antioxidant strategy, and describe the first therapeutic intervention capable of effectively reproducing the physiological, metabolic and lifespan effects of caloric restriction in healthy mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of riluzole (Ril), creatine (Cr) and a combination of these treatments on the onset and progression of clinical signs and neuropathology in an animal model of familial amyotrophic lateral sclerosis, the G93A transgenic mouse (n=13–17 per group). The onset of clinical signs was delayed (P<0.05) by about 12 days in all treatment groups compared with control; however, no differences occurred between treatments. All animals were killed at 199 days of age. At the end of the experimental period the severity of clinical signs was less (P<0.05) with all treatments compared with control. Again no differences between treatments were observed. The treatments had no effect on the number of neurons in ventral horns of the lumbar region of the spinal cord. Transgenic mice ingesting Cr displayed elevated (P<0.05) total Cr levels in cerebral hemispheres (5%) and spinal cord (8%), but not skeletal muscles. These data demonstrate that treatment with Ril and Cr were both effective in delaying disease onset and clinical disability. To the age of killing, no additional benefit was conferred by co-administration of Ril and Cr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The final steps in the absorption and excretion of copper at the molecular level are accomplished by 2 closely related proteins that catalyze the ATP-dependent transport of copper across the plasma membrane. These proteins, ATP7A and ATP7B, are encoded by the genes affected in human genetic copper-transport disorders, namely, Menkes and Wilson diseases. We studied the effect of copper perfusion of an isolated segment of the jejunum of ATP7A transgenic mice on the intracellular distribution of ATP7A by immunofluorescence of frozen sections. Our results indicate that ATP7A is retained in the trans-Golgi network under copper-limiting conditions, but relocalized to a vesicular compartment adjacent to the basolateral membrane in intestines perfused with copper. The findings support the hypothesis that the basolateral transport of copper from the enterocyte into the portal blood may involve ATP7A pumping copper into a vesicular compartment followed by exocytosis to release the copper, rather than direct pumping of copper across the basolateral membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively).