960 resultados para Metals - Mechanical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of using more economical silicon feedstock, i.e. as support for epitaxial solar cells, is of interest when the cost reduction and the properties are attractive. We have investigated the mechanical behaviour of two blocks of upgraded metallurgical silicon, which is known to present high content of impurities even after being purified by the directional solidification process. These impurities are mainly metals like Al and silicon compounds. Thus, it is important to characterize their effect in order to improve cell performance and to ensure the survival of the wafers throughout the solar value chain. Microstructure and mechanical properties were studied by means of ring on ring and three point bending tests. Additionally, elastic modulus and fracture toughness were measured. These results showed that it is possible to obtain marked improvements in toughness when impurities act as microscopic internal crack arrestors. However, the same impurities can be initiators of damage due to residual thermal stresses introduced during the crystallization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of using more economical silicon feedstock, i.e. as support for epitaxial solar cells, is of interest when the cost reduction and the properties are attractive. We have investigated the mechanical behavior of two blocks of upgraded metallurgical silicon, which is known to present high content of impurities even after being purified by the directional solidification process. The impurities are mainly metals like Al and silicon compounds. Thus, it is important to characterize their effect in order to improve cell performance and to ensure the survival of the wafers throughout the solar value chain. Microstructure and mechanical properties were studied by means of ring on ring and three point bending tests. Additionally, Young’s modulus, hardness and fracture toughness were measured. These results showed that it is possible to obtain marked improvements in toughness when impurities act as microscopic internal crack arrestors. However, the same impurities can be initiators of damage due to residual thermal stresses introduced during the crystallization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the main experimental results obtained from the study of plaster test pieces and boards with addition of various volumetric rubber fractions from mechanical grinding of end-of-life tires (ELTs), in three different particle size gradations. It includes a description of the materials employed, and their proportions. The physical and mechanical properties, as well as the thermal conductivity and acoustic insulation properties are analyzed. Experimental results obtained for specimens with addition of recycled rubber are compared with similar ones, carried out on specimens of plaster of identical features without any addition, evaluating the influence of the particle size and mixture proportions. An improvement in thermal and acoustic performance has been obtained as well as a reduction in density, and as a result, some constructive applications for paving and slabs in rehabilitation works are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we show that potassium-doped tungsten foil should be preferred to pure tungsten foil when considering tungsten laminate pipes for structural divertor applications. Potassium-doped tungsten materials are well known from the bulb industry and show an enhanced creep and recrystallization behaviour that can be explained by the formation of potassium-filled bubbles that are surrounding the elongated grains, leading to an interlocking of the microstructure. In this way, the ultra-fine grained (UFG) microstructure of tungsten foil can be stabilized and with it the extraordinary mechanical properties of the foil in terms of ductility, toughness, brittle-to-ductile transition, and radiation resistance. In this paper we show the results of three-point bending tests performed at room temperature on annealed pure tungsten and potassium-doped tungsten foils (800, 900, 1000, 1100, 1200, 1300, 1400, 1600, 1800, 2000, 2200, and 2400 °C for 1 h in vacuum). The microstructural assessment covers the measurement of the hardness and analyses of fractured surfaces as well as a comparison of the microstructure by optical microscopy. The results show that there is a positive effect of potassium-doped tungsten foils compared to pure tungsten foil and demonstrate the potential of the doped foil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This research deals with a new kind of nanopigment, obtained from the combination of organic dyes and layered nanoclays, that the authors call nanoclay-colorant pigment (NCP). Whilst they have already been employed in inks and coatings, to date these nanopigments have not been used as pigments for polymers. The existing lack of knowledge surrounding them must be redressed in order to bridge the gap between current academic studies and commercial exploitation. Therefore, the main purpose of this paper is to examine the hitherto unknown aspects of the NCP, which relate specifically to their applicability as a new type of colorant for polymers. Design/methodology/approach – A blue NCP has been prepared at the laboratory according to the patented method of synthesis (patent WO0104216), using methylene blue and montmorillonite nanoclay. It has then been applied to a thermoplastic polymer (linear low-density polyethylene – LLDPE) to obtain a coloured sample. Furthermore, samples with the same polymer but using conventional blue colorants have been prepared under the same processing conditions. The mechanical, thermal and colorimetric properties of these materials have been compared. Findings – The thermal stability of the sample coloured with NCP is reduced to some extent, while the mechanical strength is slightly increased. Moreover, this sample has better colour performance than the conventionally pigmented samples. Originality/value – In this paper, a blue NCP has been synthesised and successfully employed with polyethylene and the obtained sample shows better colour performance than polyethylene with conventional pigments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Materials Central, Contract No. AF33(616)-5905, Project No. 7351."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Ca addition on the microstructure, physical characteristics (density/porosity), and mechanical properties (tensile and impact strength) has been investigated in an Al-7Si-0.3Mg-xFe (x = 0.2, 0.4, and 0.7) alloy. The size of Al-Fe intermetallic platelets (beta-Al5FeSi) increased with increasing Fe content. The addition of Ca modified the eutectic microstructure and also reduced the size of intermetallic Fe-platelets, causing improved elongation and impact strengths. A low level of Ca addition (39 ppm) reduced the porosity of the alloys. The tensile strength was decreased marginally with Ca addition. However, Ca addition improved the ductility of the alloy by 18.3, 16.7, and 44 pet and the impact strength by 44, 48, and 15.8 pct for Fe contents of 0.2, 0.4, and 0.7 pct, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light curable dimethacrylate resin composites undergo free radical photopolymerisation in response to blue light (wavelength 450-500 nm) and may offer superior handling and setting characteristics for novel hard tissue repair materials. The current investigation aims to determine the optimum formulation of bisphenol-A glycidyl methacrylate and triethyleneglycoldimethacrylate (bisGMA/TEGDMA) or urethane dimethacrylate (UDMA)/TEGDMA resin mixtures and the effect of Bioglass incorporation on the rate of polymerisation (RP), degree of conversion (DC) and flexural strength (FS) of light-curable filled resin composites (FRCs). Experimental photoactive resins containing a range of bisGMA, UDMA and TEGDMA ratios and/or filled with non-silanised irregular or spherical 45S5-Bioglass (50 μm; 5-40 wt%) and/or silanised silicate glass filler particulates (0.7 μm; 50-70 wt%) were tested. RP and DC were analysed in real-time using nearinfrared spectroscopy. FS of resins and FRCs were determined using three-point flexural strength tests. UDMA/TEGDMA resins exhibited increased DC compared with bisGMA/TEGDMA resins (p<0.05). The addition of spherical particles of Bioglass had a detrimental effect on the FS (p>0.05), whereas they increased DC of UDMA/TEGDMA resins (p<0.05). Addition of irregular shaped Bioglass particles increased the FS of UDMA/TEGDMA resins up to 20 wt% Bioglass (p<0.05). The flexibility and strength conferred by the urethane group in UDMA may result in enhanced physical and mechanical properties compared with conventional resins containing bulky (bisGMA) molecules. Addition of 45S5-Bioglass with specific filler content, size and morphology resulted in enhanced mechanical and physical properties of UDMA/TEGDMA composites. © (2014) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide (KBr) press at different pressures and subjected to Heckel analysis. Swelling studies were performed using 200 mg compacts of the gum (freeze-dried or air-dried) compressed on a KBr press. The mechanical properties of the films of the gum prepared by casting 1 % dispersions of the gum were evaluated using Hounsfield tensiometer. The mechanical properties of grewia gum films were compared with films of pullulan and guar gum which were similarly prepared. The effect of temperature on the water uptake of the compacts was studied and the data subjected to Schott's analysis. Results: Drying conditions had no effect on the yield pressure of the gum compacts as both air-dried and freeze-dried fractions had a yield pressure of 322.6 MPa. The plots based on Schott's equation for the grewia gum samples showed that both samples (freeze-dried and air-dried) exhibited long swelling times. Grewia gum film had a tensile strength of 19.22±3.61 MPa which was similar to that of pullulan films (p > 0.05). It had an elastic modulus of 2.13±0.12 N/mm2 which was significantly lower (p < 0.05) than those of pullulan and guar gum with elastic moduli of 3.33±0.00 and 2.86±0.00 N/mm2, respectively. Conclusion: The type of drying method used does not have any effect on the degree of plasticity of grewia gum compacts. Grewia gum obtained by either drying method exhibited extended swelling duration. Matrix tablet formulations of the gum will likely swell slowly and promote sustained release of drug. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Understanding the impact of the counterion on the properties of an acidic or basic drug may influence the choice of salt form, especially for less potent drugs with a high drug load per unit dose. The aim of this work was to determine the influence of the hydrogen bonding potential of the counterion on the crystal structure of salts of the poorly soluble, poorly compressible, acidic drug gemfibrozil and to correlate these with mechanical properties. Methods Compacts of the parent drug and the salts were used to determine Young's modulus of elasticity using beam bending tests. Crystal structures were determined previously from X-ray powder diffraction data. Key findings The free acid, tert-butylamine, 2-amino-2-methylpropan-1-ol and 2-amino-2-methylpropan-1, 3-diol salts had a common crystal packing motif of infinite hydrogen-bonded chains with cross-linking between pairs of adjacent chains. The tromethamine (trsi) salt, with different mechanical properties, had a two-dimensional sheet-like network of hydrogen bonds, with slip planes, forming a stiffer compact. Conclusions The type of counter ion is important in determining mechanical properties and could be selected to afford slip and plastic deformation. © 2010 Royal Pharmaceutical Society of Great Britain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3) 63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding ABK was funded by a studentship from the University of Aberdeen, Institute of Medical Sciences, and the Overseas Research Students Awards Scheme Acknowledgments We are grateful to Dr J.S. Gregory for assistance with Image J and Mr K. Mackenzie for assistance with Micro-CT analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.