998 resultados para Mediterranean Basin
Resumo:
Mercury (II) adsorption studies in top soils (top 10 cm) from the Rio Negro basin show this process depends strongly on some selected parameters of the aqueous phase in contact with the soils. Maximum adsorption occurred in the pH range 3.0-5.0 (>90%). Dissolved organic matter shows an inhibitory effect on the availability of Hg (II) to be adsorbed by the soils, whereas a higher chloride content of the solution resulted in a lower adsorption of Hg (II) at pH 5.0. Soils with higher organic matter content were less affected by changes in the salinity. An increase in the initial Hg (II) concentration increased the amount of Hg (II) adsorbed by the soil and decreased the time needed to reach equilibrium. A Freundlich isotherm provided a good model for Hg (II) adsorption in the two types of soil studied. The kinetics of Hg (II) adsorption on Amazonian soils showed to be very fast and followed pseudo-second order kinetics. An environmental implication of these results is discussed under the real scenario present in the Negro River basin, where acidic waters are in contact with a soil naturally rich in mercury.
Resumo:
The Grande Coupure represents a major terrestrial faunal turnover recorded in Eurasia associated with the overall climate shift at the Eocene-Oligocene transition. During this event, a large number of European Eocene endemic mammals became extinct and new Asian immigrants appeared. The absolute age of the Grande Coupure, however, has remained controversial for decades. The Late Eocene-Oligocene continental record of the Eastern Ebro Basin (NE Spain) constitutes a unique opportunity to build a robust magnetostratigraphy- based chronostratigraphy which can contribute with independent age constraints for this important turnover. This study presents new magnetostratigraphic data of a 495-m-thick section (Moià-Santpedor) that ranges from 36.1 Ma to 33.3 Ma. The integration of the new results with previous litho- bio- and magnetostratigraphic records of the Ebro Basin yields accurate ages for the immediately pre- and post-Grand Coupure mammal fossil assemblages found in the study area, bracketing the Grande Coupure to an age embracing the Eocene-Oligocene transition, with a maximum allowable lag of 0.5 Myr with respect to this boundary. The shift to drier conditions that accompanied the global cooling at the Eocene-Oligocene transition probably determined the sedimentary trends in the Eastern Ebro Basin. The occurrence and expansion of an amalgamated-channel sandstone unit is interpreted as the forced response of the fluvial fan system to the transient retraction of the central-basin lake systems. The new results from the Ebro Basin allow us to revisit correlations for the controversial Eocene-Oligocene record of the Hampshire Basin (Isle of Wight, UK), and their implications for the calibration of the Mammal Palaeogene reference levels MP18 to MP21.
Resumo:
Long-period orbital forcing is a crucial component of the major global climate shifts during the Cenozoic as revealed in marine pelagic records. A complementary regional perspective of climate change can be assessed from internally drained lake basins, which are directly affected by insolation and precipitation balance. The Ebro Basin in northeastern Iberia embraces a 20 Myr long continuous sedimentary record where recurrent expansions and retractions of the central lacustrine system suggest periodic shifts of water balance due to orbital oscillations. In order to test climatic (orbital) forcing a key-piece of the basin, the Los Monegros lacustrine system, has been analyzed in detail. The cyclostratigraphic analysis points to orbital eccentricity as pacemaker of short to long-term lacustrine sequences, and reveals a correlation of maxima of the 100-kyr, 400-kyr and 2.4-Myr eccentricity cycles with periods of lake expansion. A magnetostratigraphy-based chronostratigraphy of the complete continental record allows further assessing long-period orbital forcing at basin scale, a view that challenges alternate scenarios where the stratigraphic architecture in foreland systems is preferably associated to tectonic processes. We conclude that while the location of lacustrine depocenters reacted to the long-term tectonic-driven accommodation changes, shorter wavelenght oscillations of lake environments, still million-year scale, claims for a dominance of orbital forcing. We suggest a decoupling between (tectonic) supply-driven clastic sequences fed from basin margins and (climatic) base level-driven lacustrine sequences in active settings with medium to large sediment transfer systems.
Resumo:
Coastal wetlands are characterized by high biodiversity, which is one of the main criteria considered when establishing protection policies or when proposing adequate management actions. In this study, the crustacean and aquatic insect composition of the Empord`a wetlands is described. These two faunal groups contribute highly to the total biodiversity in these wetlands but are seldom considered when managing natural areas. A selection (84 sampling points) of all water body types present in the Empord`a wetlands were sampled monthly (surber and dip net with a 250 μm mesh). Sampling was carried out during 3 surveys (1991-92, 1996-97 and 1999-2000). A rich fauna of 125 crustacean and 295 aquatic insect taxa was identified. We characterized each water body type using the most abundant species and the relative species richness of the taxonomic groups. A classification of the water body types, according to similarity between inventories, groups the brackish and hyperhaline systems in one cluster and the various freshwater systems in another one. Among freshwater systems, lotic waters and freshwater wetlands have a high similarity, whereas rice fields and freshwater springs have a low similarity
Resumo:
Variations in water volume in small depressions in Mediterranean salt marshes in Girona (Spain) are described and the potential causes for these variations analysed. Although the basins appear to be endorrheic, groundwater circulation is intense, as estimated from the difference between water volume observed and that expected from the balance precipitation / evaporation. The rate of variation in volume (VR = AV / VAt) may be used to estimate groundwater supply ('circulation'), since direct measurements of this parameter are impossible. Volume.conductivity figures can also be used to estimate the quantity of circulation, and to investigate the origin of water supplied to the system. The relationships between variations in the volume of water in the basins and the main causes of flooding are also analysed. Sea storms, rainfall levels and strong, dry northerly winds are suggested as the main causes of the variations in the volumes of basins. The relative importance assigned to these factors has changed, following the recent regulation of freshwater flows entering the system
Resumo:
Hydrological disturbances, light availability and nutrients are the most relevant factors determining the structure of the biological communities in Mediterranean rivers. While some hydrological disturbances are able to induce catastrophic effects, which may cause a complete reset in physical and biological conditions, continued enrichment or changes in light availability are factors leading to the progressive shift in the communities of autotrophs and heterotrophs in the systems. Primary production in Mediterranean streams shows relevant seasonal changes which mainly follows the variations in light availability. In most forested streams, the algal community is shade-adapted. Nutrient enrichment (especially phosphorus) leads to marked increases in primary production, but this increase is not lineal and there is a saturation of algal biomass even in the most enriched systems. The heterotrophs (bacteria, fungi) are related to the pattern of DOC availability (which most depends on the seasonal discharge and leaf fall dynamics) and to the available substrata in the stream. It has been repeatedly observed that shorttime increases of extracellular enzyme activities are related to the accumulation of autochthonous (algal) and/or allochthonous (leaves) organic matter on the streambed during spring and summer, this being more remarkable in dry than in wetter years. Flow reduction favours detritus concentration in pools, and the subsequent increase in the density and biomass of the macroinvertebrate community. In Mediterranean streams collectors are accounting for the highest density and biomass, this being more remarkable in the least permanent systems, in accordance with the effect of floods on the organic matter availability. Nutrients, through the effect on the primary producers, also affect the trophic food web in the streams by favouring the predominance of grazers
Resumo:
Rockfish species are considered important to the ecology of rocky-reef communities which constitute a key habitat in many coastal marine protected areas (MPAs). These species, which are commercially valuable for artisanal fisheries in the Mediterranean, display particular biological traits that could render them vulnerable to fishing. In this study we monitored the artisanal fisheries of scorpaenids (Scorpaena spp.) in the MPA of Cap de Creus (northwestern Mediterranean) in order to estimate the status of their populations, to link captures with the reproduction of these species, and to evaluate the potential impact that artisanal fishing may have on them. Data from onboard sampling with artisanal fishermen and from fisheries statistics (total landings) were used. Total landings and catch per unit of effort (CPUE) follow a clearly seasonal cycle, with a prominent peak during the summer months coinciding with their spawning season, which may be due to mating behavior prior to fertilization. Although maximum sizes are bigger inside the MPA than in non-protected areas situated close by, a significant percentage of individuals caught inside the MPA are below their size at sexual maturity. Although rockfish seem to be favored by the partial protection of the MPA, the allowed artisanal fisheries are probably impacting the reproduction of these species
Resumo:
Species composition and distribution of marine benthic communities from La Herradura (Alboran Sea, western Mediterranean) are described to characterise its rocky and sedimentary bottoms bionomically. Rocky bottoms were studied by means of several underwater transects and soft bottoms with fixed stations along a bathymetric gradient. The study of the floristic and faunistic composition of the rocky benthic communities highlights depth as the main axis of variation. Factorial Correspondence Analysis segregates deep-water communities below 25 m depth (circalittoral communities) from shallower communities (axis I), and communities thriving between 5 and 25 m depth (lower infralittoral communities) from communities thriving close to the surface (shallow infralittoral communities) (axis II). The study of the sedimentary bottoms also suggests that depth, together with physical sedimentary properties, is the main axis of variation in species distribution. Floristic and faunistic records show the particular composition of La Herradura benthic communities, compared to Mediterranean and Atlantic ones. Mixing of Mediterranean and Atlantic waters, together with deep water upwelling episodes typical of this area, probably determine the peculiar composition of the benthic communities
Resumo:
This study is focused on the dominance exerted by the invasive Argentine ant over native ants in a coastal Mediterranean area. Theimpact of this invasive ant on native ant assemblages and its consequences on total ant biomass and on the intensity of habitat explorationwere evaluated. Foraging ants were observed and their trajectories recorded during 5-minute periods in two study zones, one invaded andthe other non-invaded. Ant species detected, ant worker abundance, ant biomass and the intensity of soil surface searching done by antswere compared between the two zones. The Argentine ant invasion provoked a drastic reduction of the ant species richness. Apparentlyonly one native ant species is able to coexist with the Argentine ant, the cryptic Plagiolepis pygmaea. Ant worker abundance was also modified after the invasion: the number of Argentine ant workers detected, which represented 92% of the invaded zone, was two times higher than the number of native ant workers detected in the non-invaded zone. The total ant biomass was inversely affected, becoming four times lower in the invaded zone highly dominated by Linepithema humile. The higher number of Argentine ant workers and their fast tempo of activity implied an alteration of the intensity of soil surface searching: scanning by the Argentine ants in the invaded zone was higher than that done by the native ants in the non-invaded zone, and the estimated time for a complete soil surface scan was 64 minutes in the invaded zone and 108 minutes in the non-invaded zone. Consequently, resources will be discovered faster by ants in the invaded zone than in the non-invaded zone. The increase of the mean temperature and the decrease of the relative humidity from May to August reduced the ant activity in the two study zones but this reduction was greater in the invaded zone
Resumo:
Total sediment and water organic carbon and nutrient (nitrogen and phosphorus) concentrations of different environment types of a Mediterranean coastal wetland (temporary and brackish, temporary and freshwater, semi-permanent and brackish, and permanent and brackish basins) were analysed during two hydroperiods. A nitrogen limitation was found for both sediment and water. The total organic carbon concentration of the water was significantly related to the water level, which varies throughout the hydroperiods. In contrast, the total organic carbon concentration of the sediment was not related to water level. However, significant differences in total organic carbon of the sediment were found between hydroperiods. On the other hand, total organic carbon of the sediment varied spatially, being higher in temporary brackish basins with lower sand content, and lower in permanent and semi-permanent brackish basins with higher sand content
Resumo:
Mediterranean salt marshes are ecosystems that are highly influenced by sea changes and freshwater inputs from runoff. In these ecosystems, toxic and non-toxic algae blooms often produce large and unpredictable biomasses of phytoplankton. The Microtox R test has been described as a successful, quick method for detecting toxicity in various phytoplankton taxa. Ourstudy sought to test the efficiency of Microtox R in detecting toxic HAB in Mediterranean salt marshes. The results showed that the Microtox R test was able to detect toxic substances in the particulate matter of several lagoons in the Empordà salt marshes. This Microtox R toxicity coincided with periods when potentially harmful cyanobacteria, dinoflagellates andhaptophytes had a high biomass. The results suggest that potentially harmful phytoplankton cannot be ruled out as a source of Microtox R
Resumo:
Soil properties on the Cap de Creus Peninsula, NE Spain depend primarily on scarce agricultural practices and early abandonment. In the study area, 90% of which is mainly covered by Cistus shrubs, 8 environments representing variations in land use/land cover and soil properties at different depths were identified. In each environment variously vegetated areas were selected and sampled. The soils, collected at different depths, were classified as Lithic Xerorthents according to the United States Department of Agriculture system of soil classification (USDA-NRCS 1975). Differences in soil properties were largely found according to the evolution of the plant canopy and the land use history. To identify underlying patterns in soil properties related to environmental evolution, factor analysis was performed and factor scores were used to determine how the factor patterns varied between soil variables, soil depths and selected environments. The three-factor model always accounted for 80% of the total variation in the data at the different soil depths. Organic matter was the more relevant soil property at 0–2 cm depth, whereas active minerals (silt and clay) were found to be the most relevant soil parameters controlling soil dynamics at the other depths investigated. Results showed that vineyards and olive tree soils are poorly developed and present worse conditions for mineral and organic compounds. Analysis of factor scores allowed independent assessment of soils, depth and plant cover and demonstrated that soils present the best physico-chemical characteristics under Erica arborea and meadows. In contrast, soils under Cistus monspeliensis were less nutrient rich and less well structured
Resumo:
Soil respiration (SR) is a major component of ecosystems' carbon cycles and represents the second largest CO2 flux in the terrestrial biosphere. Soil temperature is considered to be the primary abiotic control on SR, whereas soil moisture is the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that makes soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under the projected future increase in droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is controlled by soil moisture rather than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from the riverside moving uphill and showed a pronounced seasonality. SR rates showed significant differences between tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR, respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.
Resumo:
Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 C) or freezing temperatures (< 0 C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc,max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc,max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibitionavoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.
Resumo:
Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.