958 resultados para Maximum Set Splitting Problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the problem of scheduling a set of periodically arriving tasks on a multiprocessor with the goal of meeting deadlines. Processors are identical and have the same speed. Tasks can be preempted and they can migrate between processors. We propose an algorithm with a utilization bound of 66% and with few preemptions. It can trade a higher utilization bound for more preemption and in doing so it has a utilization bound of 100%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the problem of sharing a wireless channel between a set of computer nodes. Hidden nodes exist and there is no base station. Each computer node hosts a set of sporadic message streams where a message stream releases messages with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements staticpriority scheduling. The MAC protocol allows multiple masters and is fully distributed. It neither relies on synchronized clocks nor out-of-band signaling; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. Our protocol has the key feature of not only being prioritized and collision-free but also dealing successfully with hidden nodes. This key feature enables schedulability analysis of sporadic message streams in multihop networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding the optimal value for a problem is usual in many areas of knowledge where in many cases it is needed to solve Nonlinear Optimization Problems. For some of those problems it is not possible to determine the expression for its objective function and/or its constraints, they are the result of experimental procedures, might be non-smooth, among other reasons. To solve such problems it was implemented an API contained methods to solve both constrained and unconstrained problems. This API was developed to be used either locally on the computer where the application is being executed or remotely on a server. To obtain the maximum flexibility both from the programmers’ and users’ points of view, problems can be defined as a Java class (because this API was developed in Java) or as a simple text input that is sent to the API. For this last one to be possible it was also implemented on the API an expression evaluator. One of the drawbacks of this expression evaluator is that it is slower than the Java native code. In this paper it is presented a solution that combines both options: the problem can be expressed at run-time as a string of chars that are converted to Java code, compiled and loaded dynamically. To wide the target audience of the API, this new expression evaluator is also compatible with the AMPL format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of resources systems selection takes an important part in Distributed/Agile/Virtual Enterprises (D/A/V Es) integration. However, the resources systems selection is still a difficult matter to solve in a D/A/VE, as it is pointed out in this paper. Globally, we can say that the selection problem has been equated from different aspects, originating different kinds of models/algorithms to solve it. In order to assist the development of a web prototype tool (broker tool), intelligent and flexible, that integrates all the selection model activities and tools, and with the capacity to adequate to each D/A/V E project or instance (this is the major goal of our final project), we intend in this paper to show: a formulation of a kind of resources selection problem and the limitations of the algorithms proposed to solve it. We formulate a particular case of the problem as an integer programming, which is solved using simplex and branch and bound algorithms, and identify their performance limitations (in terms of processing time) based on simulation results. These limitations depend on the number of processing tasks and on the number of pre-selected resources per processing tasks, defining the domain of applicability of the algorithms for the problem studied. The limitations detected open the necessity of the application of other kind of algorithms (approximate solution algorithms) outside the domain of applicability founded for the algorithms simulated. However, for a broker tool it is very important the knowledge of algorithms limitations, in order to, based on problem features, develop and select the most suitable algorithm that guarantees a good performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real structures can be thought as an assembly of components, as for instances plates, shells and beams. This later type of component is very commonly found in structures like frames which can involve a significant degree of complexity or as a reinforcement element of plates or shells. To obtain the desired mechanical behavior of these components or to improve their operating conditions when rehabilitating structures, one of the eventual parameters to consider for that purpose, when possible, is the location of the supports. In the present work, a beam-type structure is considered, and for a set of cases concerning different number and types of supports, as well as different load cases, the authors optimize the location of the supports in order to obtain minimum values of the maximum transverse deflection. The optimization processes are carried out using genetic algorithms. The results obtained, clearly show a good performance of the approach proposed. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.