953 resultados para Maximal sprint
Resumo:
Anabolic androgenic steroids (AAS) are doping agents that are mostly used for improvement of strength and muscle hypertrophy. In some sports, athletes reported that the intake of AAS is associated with a better recovery, a higher training load capacity and therefore an increase in physical and mental performances. The purpose of this study was to evaluate, the effect of multiple doses of AAS on different physiological parameters that could indirectly relate the physical state of athletes during a hard endurance training program. In a double blind settings, three groups (n = 9, 8 and 8) were orally administered placebo, testosterone undecanoate or 19-norandrostenedione, 12 times during 1 month. Serum biomarkers (creatine kinase, ASAT and urea), serum hormone profiles (testosterone, cortisol and LH) and urinary catecholamines (noradrenalin, adrenalin and dopamine) were evaluated during the treatment. Running performance was assessed before and after the intervention phase by means of a standardized treadmill test. None of the measured biochemical variables showed significant impact of AAS on physical stress level. Data from exercise testing on submaximal and maximal level did not reveal any performance differences between the three groups or their response to the treatment. In the present study, no effect of multiple oral doses of AAS on endurance performance or bioserum recovery markers was found.
Resumo:
Nine children surviving severe adult respiratory distress syndrome were studied 0.9 to 4.2 years after the acute illness. They had received artificial ventilation for a mean of 9.4 days, with an Fio2 greater than 0.5 during a mean time of 34 hours and maximal positive end expiratory pressure levels in the range of 8 to 20 cm H2O. Three children had recurrent respiratory symptoms (moderate exertional dyspnea and cough), and two had evidence of fibrosis on chest radiographs. All patients had abnormal lung function; the most prominent findings were ventilation inequalities, as judged by real-time moment ratio analysis of multibreath nitrogen washout curves (abnormal in eight of nine patients) and hypoxemia (seven of nine). Lung volumes were less abnormal; one patient had restrictive and two had obstructive disease. A significant correlation between intensive care measures (Fio2 greater than 0.5 in hours and peak inspiratory plateau pressure) and lung function abnormalities (moment ratio analysis and hypoxemia) was found. A possibly increased susceptibility of the pediatric age group to the primary insult or respiratory therapy of adult respiratory distress syndrome is suggested.
Resumo:
There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.
Resumo:
The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.
Resumo:
This study was conducted to assess the pharmacologic properties of the new orally active angiotensin II subtype I (AT1) antagonist UR-7247, a product with a half-life >100 h in humans. The experiment was designed as an open-label, single-dose administration study with four parallel groups of four healthy men receiving increasing single oral doses (2.5, 5, and 10 mg) of UR-7247 or losartan, 100 mg. Angiotensin II receptor blockade was investigated < or =96 h after drug intake, with three independent methods [i.e., the inhibition of blood pressure (BP) response to exogenous Ang II, an in vitro Ang II-receptor assay (RRA), and the reactive increase in plasma angiotensin II. Plasma drug levels also were measured. The degree of blockade observed in vivo was statistically significant < or = 96 h with all UR-7247 doses for diastolic BP (p < 0.05) and < or =48 h for systolic BP. The maximal inhibition achieved with 10 mg UR-7247 was measured 6-24 h after drug intake and reached 54 +/- 17% and 48 +/- 20% for diastolic and systolic responses, respectively. Losartan, 100 mg, induced a greater short-term AT1-receptor blockade than 2.5- and 5.0-mg doses of UR-7247 (p < 0.001 for diastolic BP), but the UR-7247 effect was longer lasting. In vivo, no significant difference was observed between 10 mg UR-7247 and 100 mg losartan 4 h after drug intake, but in vitro, the blockade achieved with 100 mg losartan was higher than that seen with UR-7247. Finally, the results confirm that UR-7247 has a very long plasma elimination half-life, which may be due to a high but also tight binding to protein binding sites. In conclusion, UR-7247 is a long-lasting, well-tolerated AT1 receptor in healthy subjects.
Resumo:
This study aimed to characterise both the [Formula: see text] kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between [Formula: see text] kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake [Formula: see text], first ventilatory threshold (VT), and the velocity associated with [Formula: see text] [Formula: see text] and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their [Formula: see text] kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. [Formula: see text] kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for [Formula: see text], [Formula: see text] and VT, respectively. For the square-wave transition, the time constant of the primary phase (τ(p)) averaged 17.3 ± 5.4 s and the relevant slow component (A'(sc)) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise [Formula: see text] (%A'(sc))]. τ(p) was correlated with [Formula: see text] (r = -0.55, P = 0.01), but not with either [Formula: see text] (r = 0.05, ns) or VT (r = 0.14, ns). The %A'(sc) did not correlate with either [Formula: see text] (r = -0.14, ns) or [Formula: see text] (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the [Formula: see text] kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster [Formula: see text] kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.
Resumo:
In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.
Resumo:
Only a small percentage of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease is directly related to familial forms. The etiology of the most abundant, sporadic forms seems to involve both genetic and environmental factors. Environmental compounds are now extensively studied for their possible contribution to neurodegeneration. Chemicals were found which were able to reproduce symptoms of known neurodegenerative diseases, others may either predispose to the onset of neurodegeneration, or exacerbate distinct pathogenic processes of these diseases. In any case, in vitro studies performed with models presenting various degrees of complexity have shown that many environmental compounds have the potential to cause neurodegeneration, through a variety of pathways similar to those described in neurodegenerative diseases. Since the population is exposed to a huge number of potentially neurotoxic compounds, there is an important need for rapid and efficient procedures for hazard evaluation. Xenobiotics elicit a cascade of reactions that, most of the time, involve numerous interactions between the different brain cell types. A reliable in vitro model for the detection of environmental toxins potentially at risk for neurodegenerative diseases should therefore allow maximal cell-cell interactions and multiparametric endpoints determination. The combined use of in vitro models and new analytical approaches using "omics" technologies should help to map toxicity pathways, and advance our understanding of the possible role of xenobiotics in the etiology of neurodegenerative diseases.
Resumo:
An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. Thirty patients with traumatic brain injury (TBI), who required sedation and mechanical ventilation, were studied during 20 min of normocapnia (5.1±0.4 kPa) and 30 min of moderate HC (4.4±3.0 kPa). Monitoring included bilateral transcranial Doppler of the middle cerebral arteries (MCA), invasive arterial blood pressure (ABP), and intracranial pressure (ICP). Mx -autoregulatory index provided a measure for the CPP responsiveness of MCA flow velocity. CPPOPT was assessed as the CPP at which autoregulation (Mx) was working with the maximal efficiency. During normocapnia, CPPOPT (left: 80.65±6.18; right: 79.11±5.84 mm Hg) was detectable in 12 of 30 patients. Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.
Resumo:
Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.
Resumo:
To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800-1,000 degrees C and variable H2O contents. At water undersaturated conditions and fO(2) established around QFM, garnet has a wide stability field. At 1.2 GPa garnet ? amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents <= 9 wt% at 950 degrees C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in T-XH2O space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe-Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy
Resumo:
INTRODUCTION: Ventilator-associated pneumonia remains the most common nosocomial infection in the critically ill and contributes to significant morbidity. Eventual decisions regarding withdrawal or maximal therapy are demanding and rely on physicians' experience. Additional objective tools for risk assessment may improve medical judgement. Copeptin, reflecting vasopressin release, as well as the Sequential Organ Failure Assessment (SOFA) score, reflecting the individual degree of organ dysfunction, might qualify for survival prediction in ventilator-associated pneumonia. We investigated the predictive value of the SOFA score and copeptin in ventilator-associated pneumonia. METHODS: One hundred one patients with ventilator-associated pneumonia were prospectively assessed. Death within 28 days after ventilator-associated pneumonia onset was the primary end point. RESULTS: The SOFA score and the copeptin levels at ventilator-associated pneumonia onset were significantly elevated in nonsurvivors (P = .002 and P = .017, respectively). Both markers had different time courses in survivors and nonsurvivors (P < .001 and P = .006). Mean SOFA (average SOFA of 10 days after VAP onset) was superior in predicting 28-day survival as compared with SOFA and copeptin at ventilator-associated pneumonia onset (area under the curve, 0.90 vs 0.73 and 0.67, respectively). CONCLUSIONS: The predictive value of serial-measured SOFA significantly exceeds those of single SOFA and copeptin measurements. Serial SOFA scores accurately predict outcome in ventilator-associated pneumonia.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
Tripping is considered a major cause of fall in older people. Therefore, foot clearance (i.e., height of the foot above ground during swing phase) could be a key factor to better understand the complex relationship between gait and falls. This paper presents a new method to estimate clearance using a foot-worn and wireless inertial sensor system. The method relies on the computation of foot orientation and trajectory from sensors signal data fusion, combined with the temporal detection of toe-off and heel-strike events. Based on a kinematic model that automatically estimates sensor position relative to the foot, heel and toe trajectories are estimated. 2-D and 3-D models are presented with different solving approaches, and validated against an optical motion capture system on 12 healthy adults performing short walking trials at self-selected, slow, and fast speed. Parameters corresponding to local minimum and maximum of heel and toe clearance were extracted and showed accuracy ± precision of 4.1 ± 2.3 cm for maximal heel clearance and 1.3 ± 0.9 cm for minimal toe clearance compared to the reference. The system is lightweight, wireless, easy to wear and to use, and provide a new and useful tool for routine clinical assessment of gait outside a dedicated laboratory.
Resumo:
This study aimed to examine the effects of a 5-h hilly run on ankle plantar (PF) and dorsal flexor (DF) force and fatigability. It was hypothesised that DF fatigue/fatigability would be greater than PF fatigue/fatigability. Eight male trail long distance runners (42.5 ± 5.9 years) were tested for ankle PF and DF maximal voluntary isokinetic contraction strength and fatigue resistance tests (percent decrement score), maximal voluntary and electrically evoked isometric contraction strength before and after the run. Maximal EMG root mean square (RMS(max)) and mean power frequency (MPF) values of the tibialis anterior (TA), gastrocnemius lateralis (GL) and soleus (SOL) EMG activity were calculated. The peak torque of the potentiated high- and low-frequency doublets and the ratio of paired stimulation peak torques at 10 Hz over 100 Hz (Db10:100) were analysed for PF. Maximal voluntary isometric contraction strength of PF decreased from pre- to post-run (-17.0 ± 6.2%; P < 0.05), but no significant decrease was evident for DF (-7.9 ± 6.2%). Maximal voluntary isokinetic contraction strength and fatigue resistance remained unchanged for both PF and DF. RMS(max) SOL during maximal voluntary isometric contraction and RMS(max) TA during maximal voluntary isokinetic contraction were decreased (P < 0.05) after the run. For MPF, a significant decrease for TA (P < 0.05) was found and the ratio Db10:100 decreased for PF (-6.5 ± 6.0%; P < 0.05). In conclusion, significant isometric strength loss was only detected for PF after a 5-h hilly run and was partly due to low-frequency fatigue. This study contradicted the hypothesis that neuromuscular alterations due to prolonged hilly running are predominant for DF.