973 resultados para Maxiamal oxygen uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model is proposed to determine the effects of Si substitution with Al on the oxygen diffusion in apatite-type lanthanum silicates based on density-functional theory (DFT) calculations for La10(SiO 4)4(AlO4)2O2. Substitution changes the stable configuration for excess oxygen from the split interstitial to a new cluster form with the original cluster. Al doping completely changes the migration mechanism from the interstitialcy one, which was proposed for the La9.33(SiO4)6O2 starting material, to a mechanism which contains an interstitial process. Nevertheless, the migration barrier is calculated to be 0.81 eV, which indicates small changes in oxygen conduction and is consistent with the observations. The present study indicates that the cation substitution on silicon site alone does not promise the improvement of the oxide ion conduction in the lanthanum silicate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using density functional theory, we investigated the position preference and diffusion mechanisms of interstitial oxygen ions in lanthanum silicate La9.33Si6O26, which is an apatite-structured oxide and a promising candidate electrolyte material for solid oxide fuel cells. The reported lanthanum vacancies were explicitly taken into account by theoretically determining their arrangement with a supercell model. The most stable structures and the formation energies of oxygen interstitials were determined for each charged state. It was found that the double-negatively charged state is stable over a wide range of the Fermi level, and that the excess oxygen ions form split interstitials with the original oxygen ions, while the neutral and the single-negatively charged states preferably form molecular oxygen. These species were found near the lanthanum vacancy site. The theoretically determined migration pathway along the c-axis essentially follows an interstitialcy mechanism. The obtained migration barrier is sensitive to the charge state, and is also affected by the lanthanum vacancy. The barrier height of the double-negatively charged state was calculated to be 0.58 eV for the model structure, which is consistent with the measured activation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amorphous silicon carbonitride (Si1-x-yCxN y, x = 0:43, y = 0:31) coating was deposited on polyimide substrate using the magnetron-sputtering method. Exposure tests of the coated polyimide in atomic oxygen beam and vacuum ultraviolet radiation were performed in a ground-based simulator. Erosion kinetics measurements indicated that the erosion yield of the Si0.26C0.43N0.31 coating was about 1.5x and 1.8 × 10-26 cm3 /atom during exposure in single atomic oxygen beam, simultaneous atomic oxygen beam, and vacuum ultraviolet radiation, respectively. These values were 2 orders of magnitude lower than that of bare polyimide substrate. Scanning electron and atomic force microscopy, X-ray photoelectron spectrometer, and Fourier transformed infrared spectroscopy investigation indicated that during exposures, an oxide-rich layer composed of SiO2 and minor Si-C-O formed on the surface of the Si 0.26C0.43N0.31 coating, which was the main reason for the excellent resistance to the attacks of atomic oxygen. Moreover, vacuum ultraviolet radiation could promote the breakage of chemical bonds with low binding energy, such as C-N, C = N, and C-C, and enhance atomic oxygen erosion rate slightly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lead based ferroelectric PbZr0.53Ti0.47O3 (PZT), (Pb0.90La0.10)TiO3 (PLT10) and (Pb0.80La0.20)TiO3 (PLT20) thin films, prepared by pulsed laser ablation technique, were studied for their response to the 70 MeV oxygen ion irradiation. The dielectric analysis, capacitance-voltage (C- V) and DC leakage current measurements were performed before and after the irradiation to high-energy oxygen ions. The irradiation produced considerable changes in the dielectric, C-V, leakage characteristics and induced some amount of amorphization. The PZT films showed partial recrystallization after a thermal annealing at 400 degrees C for 10 min. The phase transition temperature [T-c] of PLT20 increased from 115 degrees C to 120 degrees C. The DC conductivity measurements showed a shift in the onset of non-linear conduction region. The current density decreased by two orders of magnitude after irradiation. After annealing the irradiated films at a temperature of 400 degrees C for 10 min, the films partially regained the dielectric and electrical properties. The results are discussed in terms of the irradiation-induced amorphization, the pinning of the ferroelectric domains by trapped charges and the thermal annealing of the defects generated during the irradiation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex typeN-linked oligosaccharides derived from fetuin, fibrinogen and thyroglobulin were coupled to acetyltyrosine affording a series of neoglycopeptides with retention of terminal structures and the beta-anomeric configuration of their reducing endN-acetylglycosamine residue. The neoglycopeptides thus synthesized could be labelled to high specific activities with125I in the aromatic side chain of tyrosine. Analysis of the fate of these neoglycopeptides in conjunction with inhibition with asialofetuin and oligosaccharides of defined structure in micein vivo revealed the uptake of galactosylated biantennary compound by kidneys, in addition to the known itinerary of triantennary galactosylated complex oligosaccharide from fetuin to liver and the galactosylated biantennary chain with fucosylation in the core to bone marrows. On the other hand, the agalacto, aglucosamino biantennary chains with and without fucosylation in the core region are taken up by submaxillary glands while the conserved trimannosyl core with fucose is primarily concentrated in stomach tissue. These studies thus define new routes for the uptake of complexN-linked glycans and also subserve to identify lectins presumably involved in their recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2-SnO2 solid solution has been reported to possess high oxygen storage/release property which possibly originates from local structural distortion. We have performed first-principles based density functional calculations of Ce1-xSnxO2 structure (x=0, 0.25, 0.5, 1) to understand its structural stability in fluorite in comparison to rutile structure of the other end-member SnO2, and studied the local structural distortion induced by the dopant Sn ion. Analysis of relative energies of fluorite and rutile phases of CeO2, SnO2, and Ce1-xSnxO2 indicates that fluorite structure is the most stable for Ce1-xSnxO2 solid solution. An analysis of local structural distortions reflected in phonon dispersion show that SnO2 in fluorite structure is highly unstable while CeO2 in rutile structure is only weakly unstable. Thus, Sn in Ce1-xSnxO2-fluorite structure is associated with high local structural distortion whereas Ce in Ce1-xSnxO2-rutile structure, if formed, will show only marginal local distortion. Determination of M-O (M=Ce or Sn) bond lengths and analysis of Born effective charges for the optimized structure of Ce1-xSnxO2 show that local coordination of these cations changes from ideal eightfold coordination expected of fluorite lattice to 4+4 coordination, leading to generation of long and short Ce-O and Sn-O bonds in the doped structure. Bond valence analyses for all ions show the presence of oxygen with bond valence similar to 1.84. These weakly bonded oxygen ions are relevant for enhanced oxygen storage/release properties observed in Ce1-xSnxO2 solid solution. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystalline Bi5NbO10 nanoparticles have been achieved through a modified sol–gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi5NbO10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5–60 nm Bi5NbO10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi5NbO10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200–350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi5NbO10 solid solutions at 700 °C is 2.86 Ω−1 m−1 which is in same order of magnitude for Y2O3-stabilized ZrO2 ceramics at same temperature. These results suggest that Bi5NbO10 is a promising material for an oxygen ion conductor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of glycine in vitro into the silk glands of the silkworm has been studied. Glycine accumulates inside the tissue to a concentration higher than that present outside, indicating an active transport mechanism. The kinetics of uptake show a biphasic curve and two apparent Km values for accumulation, 0.33 mM and 5.00 mM. The effect of inhibitors on the energy metabolism of glycine transport is inconclusive. Exchange studies indicate the existence of two pools inside the gland, one that is easily removed by exchange and osmotic shock, and the other which is not. The results obtained conform with the carrier model of Britten and McClure concerning the amino-acid pool in E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport of 1-14C-IAA in successive stem segments of Cuscuta was strictly basipetal in growing and non growing regions of the vine with a flux velocity of 10-12 mm/h (intercept method). This transport showed a distinct peaked profile, increasing from a low value at 10 mm from the apex to a maximum between 50 and 90 mm before declining to a low value again around 160 mm at which elongation growth ceased. The IAA transport profile paralleled the in vivo growth rate profile, though the latter peaked ahead of transport. A better correlation was observed between the profile of growth responsiveness of the vine to exogenous IAA application and the profile of IAA transport. Growth responsiveness was determined as the differential in growth rate of stem segments in vitro in the absence and presence of growth optimal concentration of IAA (10 μm). Retention of exogenous IAA in the stem was maximal where transport decreased, and this coincided with the region of maximal conjugation of applied 1-14C-IAA to aspartic acid to form indoleacetylaspartate (IAAsp). In addition to aspartate, IAA was conjugated to a small extent to an unidentified compound. IAA destruction by decarboxylation was greatest where transport was low, particularly in the nongrowing region, where lignification occurred (i.e., beyond 180 mm). At concentrations up to 20 μM, a pulse of 1-14C-IAA chased by "cold" IAA moved as a peak (with a peak displacement velocity of 12-18 mm/h) in the "growth" region of the vine, but became diffusionlike where growth either fell off steeply or ceased. At a higher (50 μM) IAA concentration, though uptake was not saturated, transport in the growth region became diffusionlike, indicating saturation of the system. Reduced IAA flux in the region where growth responsiveness to IAA declined coincided with the region of increased IAA conjugation. However, it cannot be concluded whether increased IAA conjugation was the cause or effect of decreased IAA flux. Application of benzyladenine to the vines in vivo, a treatment that elicited haustoria formation by 72 h, resulted in the inhibition of both IAA transport and elongation growth rate in the subapical region. In vitro treatment of vine segments with BA similarly increased IAA retention and decreased IAA transport. IAA loss was suppressed, and conjugation to IAAsp was enhanced. © 1989 Springer-Verlag New York Inc.