956 resultados para Matrix Protein Vp40
Resumo:
The rumen degradability parameters of the diet selected by two to four oesophageal-fistulated Brahman steers grazing a range of tropical pastures were determined by incubation of extrusa in nylon bags suspended in the rumen of rumen-fistulated (RF) Brahman steers. The effective protein degradability (Edg) was determined by measuring the rate of disappearance of neutral detergent insoluble nitrogen (NDIN) less acid detergent insoluble nitrogen (ADIN) in the incubated extrusa. Six to eight RF steers also grazed each of the pastures along with the oesophageal-fistulated steers, to allow determination of key rumen parameters and rumen particulate matter fractional outflow rates (FOR). The seven pastures studied included: native tropical grass (C4) pasture (major species Heteropogon contortus and Bothriochloa bladhii), studied in the early wet (NPEW), the wet/dry transition (NPT) and the dry (NPD) seasons; introduced tropical grass (C4) pasture (Bothriochloa insculpta), studied in the mid wet season (BB); the introduced tropical legumes (C3), Lablab purpureus (LL) and Clitoria ternatea (BP); and the temperate grass (C3) pasture, ryegrass (Lolium multiflorum, RG). Using the measured particle FOR values in calculations, the Edg estimates were very high for both C4 and C3 species: 0.82–0.91 and 0.95–0.98 g/g crude protein (CP), respectively. Substitution of an assumed FOR (kp = 0.02/h) for the measured values for each pasture type did not markedly affect estimates of Edg. However, C4 tropical grasses had much lower effective rumen degradable protein (ERDP) fractions (23–66 g/kg DM) than the C3 pasture species RG and LL (356 and 243 g/kg DM, respectively). This was associated with a lower potential degradability and degradation rate of organic matter (OM) in sacco, lower in vitro organic matter digestibility (IVOMD) and CP concentrations in the extrusa, and lower ammonia-N and branched-chain fatty acid concentrations in rumen fluid for the tropical grasses. As tropical grass pastures senesced, there was a decline in Edg, the ERDP and rumen undegradable protein (UDP) fractions, the potential degradability and degradation rate of OM and the IVOMD. These results provide useful data for estimating protein supply to cattle grazing tropical pastures.
Resumo:
Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.
Resumo:
Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system.
Resumo:
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Resumo:
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.
Resumo:
The complexity, variability and vastness of the northern Australian rangelands make it difficult to assess the risks associated with climate change. In this paper we present a methodology to help industry and primary producers assess risks associated with climate change and to assess the effectiveness of adaptation options in managing those risks. Our assessment involved three steps. Initially, the impacts and adaptation responses were documented in matrices by ‘experts’ (rangeland and climate scientists). Then, a modified risk management framework was used to develop risk management matrices that identified important impacts, areas of greatest vulnerability (combination of potential impact and adaptive capacity) and priority areas for action at the industry level. The process was easy to implement and useful for arranging and analysing large amounts of information (both complex and interacting). Lastly, regional extension officers (after minimal ‘climate literacy’ training) could build on existing knowledge provided here and implement the risk management process in workshops with rangeland land managers. Their participation is likely to identify relevant and robust adaptive responses that are most likely to be included in regional and property management decisions. The process developed here for the grazing industry could be modified and used in other industries and sectors. By 2030, some areas of northern Australia will experience more droughts and lower summer rainfall. This poses a serious threat to the rangelands. Although the impacts and adaptive responses will vary between ecological and geographic systems, climate change is expected to have noticeable detrimental effects: reduced pasture growth and surface water availability; increased competition from woody vegetation; decreased production per head (beef and wool) and gross margin; and adverse impacts on biodiversity. Further research and development is needed to identify the most vulnerable regions, and to inform policy in time to facilitate transitional change and enable land managers to implement those changes.
Resumo:
In this study, we investigated the application of “on-the-go” assessment of wheat protein and moisture under a breeding trial situation.
Resumo:
NMR spectra of molecules oriented in thermotropic liquid crystalline media provide information on the molecular structure and order. The spins are generally strongly dipolar coupled and the spectral analyse require the tedious and time consuming numerical iterative calculations. The present study demonstrates the application of multiple quantum spin state selective detection of single quantum transitions for mimicking the homonuclear decoupling and the direct estimation of an element of ordering matrix. This information is utilized to estimate the nearly accurate starting dipolar couplings for iterative calculations. The studies on the spectra of strongly dipolar coupled five and six interacting spin systems are reported.
Resumo:
We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.
Resumo:
We report on the bacterial protein-based all-optical switches which operate at low laser power, high speed and fulfil most of the requirements to be an ideal all-optical switch without any moving parts involved. This consists of conventional optical waveguides coated with bacteriorhodopsin films at switching locations. The principle of operation of the switch is based on the light-induced refractive index change of bacteriorhodopsin. This approach opens the possibility of realizing proteinbased all-optical switches for communication network, integrated optics and optical computers.
Resumo:
Riboflavin-binding protein was purified from the egg white of domestic duck and some of its properties were investigated. The protein was homogeneous by the criteria of gel filtration on Sephadex G-100 and electrophoresis on sodium dodecyl sulphate-polyacrylamide gels, had molecular weight of 36 000 ± 1000 and, unlike the chicken egg white protein (Mr 32 000 ± 2000), was devoid of covalently-bound carbohydrate. It was similar to the chicken riboflavin-binding protein in its behavior on ion-exchange celluloses and affinity to interact with the flavin and its coenzymes, but differed significantly in amino acid composition in that it completely lacked proline and contained less of methionine and arginine. The protein partially cross-reacted with the specific antiserum to chicken riboflavin-binding protein with a spur during immunodiffusion analysis.
Resumo:
The octameric nucleosomal core-histone complex, (H2A)2-(H2B)2-(H3)2-(H4)2, isolated from rat liver, undergoes dissociation during gel exclusion chromatography as a result of dilution occurring in the columns. The elution pattern at pH 7.0 and 4°C showed a sharp leading peak containing all four histones but predominantly H3 and H4, and a trailing peak containing equal amounts of histones H2A and H2B. As column length was increased the area under the leading peak decreased and that under the trailing peak increased. In addition the relative positions of the two peaks varied with column length. From an analysis of the data on increase in elution volume of the leading peak in relation to column length an apparent molecular weight of 86 000 was calculated for the undissociated molecule. Its apparent molecular weight, histone composition and pattern of further dissociation in relation to column length suggest that this species is the hexamer, (H2A-H2B)-(H3)2-(H4)2. At pH 7.0 and 4°C the dissociation of the core complex appears to be as follows: (H2A)2-(H2B)2-(H3)2-(H4)2 → (H2A-H2B) + (H2A-H2B)-(H3)2-(H4)2 → 2(H2A-H2B) + (H3)2-(H4)2 This dissociation was accelerated by an increase in temperature or decrease in pH and was accompanied by marked conformational changes as judged by circular dichroism measurements.
Resumo:
This paper describes a switching theoretic algorithm for the folding of programmable logic arrays (PLA). The algorithm is valid for both column and row folding, although it has been presented considering only the simple column folding. The pairwise compatibility relations among all the pairs of the columns of the PLA are mapped into a square matrix, called the compatibility matrix of the PLA. A foldable compatibility matrix (FCM), a new concept introduced by the author, is then derived from the compatibility matrix. A new theorem called the folding theorem is then proved. The theorem states that the existence of an m by 2m FCM is both necessary and sufficient to fold 2m columns of the n column PLA (2m ≤ n). Once an FCM is obtained, the ordered pairs of foldable columns and the re-ordering of the rows are readily determined.
Resumo:
The nucleic acid binding properties of the testis protein, TP, were studied with the help of physical techniques, namely, fluorescence quenching, UV difference absorption spectroscopy, and thermal melting. Results of quenching of tyrosine fluorescence of TP upon its binding to double-stranded and denatured rat liver nucleosome core DNA and poly(rA) suggest that the tyrosine residues of TP interact/intercalate with the bases of these nucleic acids. From the fluorescence quenching data, obtained at 50 mM NaCl concentration, the apparent association constants for binding of TP to native and denatured DNA and poly(rA) were calculated to be 4.4 X 10(3) M-1, 2.86 X 10(4) M-1, and 8.5 X 10(4) M-1, respectively. UV difference absorption spectra upon TP binding to poly(rA) and rat liver core DNA showed a TP-induced hyperchromicity at 260 nm which is suggestive of local melting of poly(rA) and DNA. The results from thermal melting studies of binding of TP to calf thymus DNA at 1 mM NaCl as well as 50 mM NaCl showed that although at 1 mM NaCl TP brings about a slight stabilization of the DNA against thermal melting, a destabilization of the DNA was observed at 50 mM NaCl. From these results it is concluded that TP, having a higher affinity for single-stranded nucleic acids, destabilizes double- stranded DNA, thus behaving like a DNA-melting protein.
Resumo:
The chemical nature of the hydrolysis products from the glucosinolate-myrosinase system depends on the presence or absence of supplementary proteins such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles from terminal alkenyl glucosinolates and, as recent evidence suggests, simple nitriles at the expense of isothiocyanates. From a human health perspective isothiocyanates are the most important because they are major inducers of carcinogen-detoxifying enzymes. Fe2+ is an essential factor in ESP activity, although several recent studies have highlighted discrepancies in the understanding of the ESP-iron interaction. To investigate further the role iron species play in regulating ESP activity, four ESP-containing seedpowders were analyzed for ESP and myrosinase activities, endogenous iron content, and glucosinolate degradation products after the addition of iron species, specific chelators, and reducing agents. For the first time this paper shows the effect of these additions on the hydrolysis of individual glucosinolates that constitute the total pool. Aged seeds and 3-day seedlings were also tested to investigate the effects of seed storage and early plant development on iron levels and ESP activity. The four ESP-containing plant systems tested gave two distinctive responses, thus providing strong evidence that ESPs vary markedly in their Fe2+ requirement for activity. The results also indicated that reduction of ferric to ferrous iron drives variations in ESP activity during early plant development. The reverse oxidation reaction provided a convincing explanation for the loss of ESP activity during seed storage. Aged seeds produced seedlings with substantially lower ESP activity, and there was a concomitant loss in germination rate. It was concluded that manipulation of endogenous iron levels of ESP-containing plants could increase the conversion of glucosinolates to isothiocyanates and enhance potential health benefits.