994 resultados para Matematica grega
Resumo:
This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.
Resumo:
La presente tesi concerne il trattato "Ottica" scritto da Euclide nel III secolo a.C. quando, nell'area del bacino del Mediterraneo, si verificò una rivoluzione scientifica che diede origine alla nascita della scienza moderna. Si colloca nel filone delle ricerche volte a ricostruire la verità storica ed il contenuto scientifico del pensiero dello scienziato ed a meglio illustrare i contributi dati, dalla scienza ellenistica, alla conoscenza del fenomeno visivo. Si sono presi in esame dunque il momento storico e la situazione economica, sociale e scientifica verificatasi nel III secolo a.C., in particolare ad Alessandria d'Egitto, dove l'incontro del pensiero greco con le culture preesistenti portò alla nascita del metodo scientifico moderno; si sono considerati il pensiero filosofico del tempo e le teorie scientifiche sviluppatesi, con particolare riguardo alla matematica ed alla scienza medica, fondata dal medico alessandrino Erofilo. Si è poi preso in esame il contenuto del trattato. L' "Ottica" è il primo trattato di ottica geometrica della storia e la prima teoria scientifica che si occupi della visione. È basato sul metodo ipotetico-deduttivo, su conoscenze di oftalmologia e sulla scienza matematica degli Elementi. È un modello geometrico di un processo fisiologico e riconferma la matematica quale strumento principe per la costruzione del sapere scientifico. Crea modelli utili per altre teorie scientifiche (ad es. l'astronomia) e per le arti figurative ed ha applicazioni tecnologiche (ad es. l'astrolabio e la diottra). È il testo di base della moderna ottica geometrica. Non si pone come una verità assoluta ma come un'ipotesi di lavoro. Si sono esaminati il difficile percorso storico e bibliografico dell'opera caratterizzato da incomprensioni e manomissioni nonché la ricerca filologica volta a ricostruire l'integrità del testo. Si ritenne infatti che la sua validità fosse inficiata da alcuni "errori", in realtà dovuti all'incomprensione dei concetti e del metodo euclidei ed alle successive manomissioni. Emerge come la scienza non abbia avuto un progresso costante, continuo, aprioristico e come sia incerta ed instabile la conservazione nel tempo del sapere scientifico. Appare inoltre evidente come la scienza sia un prodotto della cultura umana e pertanto come la conoscenza della storia sia una condizione fondante per il progresso scientifico.